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ABSTRACT 

This project explores the crucial field of medical imaging on Diabetic Retinopathy(DR), with an emphasis on image 

quality enhancement. This project focus on enhancing the fundus images  which make correct grading easy. 

Enhancing the raw fundus images and transforming them into high-quality is essential for predicting the grade level in 

DR diagnosis. For enhancing the fundus images we use a functions and techniques from python library called 

OpenCV.  The trained model AlexNet is used to classify retinal images into diabetic retinopathy severity levels. 

Leveraging the sequential connectivity of AlexNet, it enables the capture of intricate details and features within retinal 

images, enhancing subtle abnormalities associated with diabetic retinopathy (DR) such as microaneurysms, 

hemorrhages, and exudates. Experimentation is performed on diabetic retinopathy dataset, which has 6,040  retinal 

images with a five classes of severity levels i.emild, severe, moderate, no_dr, proliferate_dr. The mentioned 

techniques yield an accuracy of 92%, for the identification  of severity levels in DR images and it provides the report 

of guiding about the treatment to be taken. 

Index Terms— Retinopathy, image quality enhancement, deep learning, OpenCV 

1. INTRODUCTION 

Advanced Diabetic Retinopathy (DR) imaging has emerged as a critical tool in the diagnosis and management of 

diabetic eye diseases, which are among the leading causes of vision loss worldwide. Diabetic retinopathy, a 

complication of diabetes, affects the retina and can progress from mild nonproliferative stages to severe proliferative 

stages if left untreated. Early detection and accurate grading of DR severity are crucial for timely intervention and 

prevention of vision loss. 

This paper focuses on addressing two primary challenges in advanced diabetic retinopathy imaging: image quality 

enhancement and DR grading. Image quality enhancement techniques aim to mitigate common issues such as low 

contrast, noise, blur and brightness present in DR images, thereby improving their interpretability and diagnostic 

utility. On the other hand, DR grading involves categorizing retinal images into different severity levels based on the 

presence and extent of characteristic lesions associated with diabetic retinopathy. 

To achieve these objectives, state-of-the-art deep learning models, particularly convolutional neural networks (CNNs), 

are employed. These models have demonstrated remarkable capabilities in image analysis tasks, including image 

classification, identification and segmentation, making them well-suited for DR grading. Additionally, the availability 

of large-scale datasets containing diverse retinal images facilitates the training and evaluation of these models, leading 

to robust and generalizable solutions. 

This paper, presents a comprehensive framework that integrates image quality enhancement techniques with deep 

learning-based DR grading algorithms. We demonstrate the effectiveness of our approach through experimental results 

on a curated dataset specifically tailored for diabetic retinopathy imaging. By combining advanced imaging 

technologies with cutting-edge deep learning methodologies, our work contributes to the advancement of diabetic 

retinopathy diagnosis and treatment, ultimately benefiting millions of individuals affected by this sight-threatening 

condition. 

2. LITERATURE SURVEY 

1. The author  introduces a novel collaborative learning framework termed CLEAQ-DR, which stands for 

Collaborative Learning for Enhanced Image Quality Assessment and Diabetic Retinopathy Grading. This framework 

integrates three key components: image quality assessment (IQA), image quality enhancement (IQE), and disease 

grading subnetworks. The IQA subnetwork evaluates and regulates the quality of retinal fundus images, while the IQE 

subnetwork enhances low-quality images. Simultaneously, the disease grading subnetwork performs automated 

diagnostics for diabetic retinopathy (DR). Evaluation on the EyeQ and Messidor datasets demonstrates the 
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effectiveness of CLEAQ-DR. It exhibits notable improvements in DR grading compared to standalone DR grading 

subnetworks, with minimal degradation in performance even when handling low-quality fundus images. Additionally, 

CLEAQ-DR outperforms traditional image correction methods and deep learning approaches in terms of Peak Signal-

to-Noise Ratio (PSNR) metrics, showcasing its superiority in enhancing image quality. 

2. The paper sets out to assess the efficacy of global image coherence (GIC) as a quantitative metric for in vivo image 

quality through the exploration of various coherence measures. Key methodologies employed include the 

identification of regions of interest (ROI) with in vivo images, the introduction and demonstration of GIC as a metric 

not reliant on segmented ROIs, and the testing of hypotheses regarding the correlation between different coherence 

measures. In conducting the study, in vivo cardiac channel data was recorded using a GE Vingmed Ultrasound Vivid 

E95 ultrasound system and a 4Vc-D matrix array probe. Coherence beamformers, which gauge coherence or similarity 

of received signals, were employed to measure coherence. The dataset utilized for this investigation is the Very Large 

cardiac Channel data Database (VLCD), encompassing 33,280 individual image frames derived from 538 recordings 

of 106 patients. These recordings, captured using the GE Vingmed Ultrasound Vivid E95 ultrasound system and the 

4Vc-D matrix array probe, include cardiac channel data from standard scan views such as parasternal long axis 

(PLAX), parasternal short axis (PSAX), apical four-chamber (A4C), apical two-chamber (A2C), and apical long axis 

(ALAX). Through this comprehensive approach, the paper seeks to establish GIC as a robust and reliable metric for 

evaluating in vivo image quality. 

3. The primary focus of the paper is to propose a deep learning-based approach for enhancing low-quality medical 

images tailored for Computer-Aided Diagnosis (CAD) applications. This method employs a sophisticated deep model 

featuring a residual block and gating mechanism within an encoder-decoder architecture. Additionally, the paper 

introduces a multi-term objective function designed to produce enhanced images that appear natural. Extensive 

experimentation is conducted to assess the feasibility and performance of the proposed method, demonstrating its 

effectiveness through both qualitative and quantitative evaluations. To facilitate these experiments, a dataset 

comprising over 30,000 medical images sourced from diverse fields such as radiology, dermatology, and microscopy 

is meticulously prepared for training and testing purposes. Through these combined efforts, the paper aims to offer a 

robust solution for enhancing low-quality medical images, thereby advancing the capabilities of CAD systems in 

clinical practice. 

4.  The main objectives of the paper, as outlined by the authors, are to enhance image quality through Contrast Limited 

Adaptive Histogram Equalization (CLAHE) and integrate it with various deep learning classification algorithms for 

diagnosing diabetic retinopathy. Specifically, the paper seeks to evaluate the effectiveness of CLAHE-based image 

enhancement on deep learning models such as VGG16, InceptionV3, EfficientNet, and ResNet34 for diabetic 

retinopathy classification. The overarching aim is to develop a computer-aided diagnosis system to aid 

ophthalmologists in diagnosing diabetic retinopathy by enhancing image quality and improving classification 

accuracy. To achieve this, the authors employed CLAHE-based image enhancement alongside deep learning models, 

including VGG16, InceptionV3, EfficientNet, and ResNet34, for diabetic retinopathy classification. The study utilized 

the APTOS 2019 dataset sourced from Kaggle, comprising 3,288 images specifically curated for diabetic retinopathy 

classification. 

5. The main objectives of the paper "Improving Retinal Image Quality Using Contrast Stretching, Histogram 

Equalization, and CLAHE Methods with Median Filters" are focused on enhancing the quality of retinal images. The 

study employs various image enhancement techniques, including contrast stretching, histogram equalization (HE), and 

Contrast Limited Adaptive Histogram Equalization (CLAHE), in combination with median filters for noise reduction. 

These methods aim to improve the visual quality of retinal images by enhancing contrast and reducing noise artifacts. 

The effectiveness of these techniques is evaluated using key performance metrics such as Mean Square Error (MSE), 

Peak Signal to Noise Ratio (PSNR), and Structural Similarity Index (SSIM). By analyzing these metrics, the study 

provides insights into the accuracy and performance of the proposed image enhancement methods. Furthermore, the 

research utilizes the STARE dataset, a standard dataset of retinal images, comprising 20 images in .jpg format. 

Through the experimentation on the STARE dataset, the paper aims to showcase the efficacy of contrast stretching, 

histogram equalization, and CLAHE methods with median filters in improving the overall quality of retinal images. 

6. The main objective of the study was to compare eleven full-reference IQA models for their effectiveness as 

objectives in optimizing image processing algorithms for four low-level vision tasks: denoising, deblurring, super-

resolution, and compression. The study utilized deep neural networks (DNNs) trained on these IQA models to 

optimize images for the specified tasks. The performance of the models was evaluated through subjective testing, 

where human ratings were collected to rank the models based on their perceptual performance in the tasks. The study 

aimed to elucidate the relative advantages and disadvantages of the IQA models in these tasks and propose desirable 
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properties for future IQA models. The DIV2K validation set was used for evaluating the optimization results, ensuring 

a comprehensive assessment of the models' performance. 

3. ENHANCED MODEL ATTRIBUTES 

To improve the quality and interpretability of retinal images, to facilitate accurate diagnosis and treatment for sight-

threatening condition the image enhancement  is used, it subtle pathological changes associated with DR, such as 

microaneurysms, hemorrhages, exudates, and neovascularisation. Moreover, enhanced images provide a clearer 

visualization of retinal structures, aiding in the analysis of DR features for more precise grading and assessment of DR 

severity. 

For the identification of severity levels in diabetic retinopathy image, the trained model AlexnNet is used. Enhanced 

images are trained using AlexNet model to identify the features such as microneursyms, haemorrhages, exudates and 

neovascularisation. By leveraging AlexNet, healthcare professionals can effectively discern subtle abnormalities in 

retinal morphology and vasculature, facilitating the classification of diabetic retinopathy into various severity levels, 

ranging from mild nonproliferative to severe proliferative stages. 

4. METHODOLOGY 

1.Dataset: The dataset used for the advanced diabetic retinopathy imaging, is diabetic retinopathy dataset, which has 

6,040  retinal images with a five classes of severity levels i.e mild, severe, moderate, no_dr, proliferate_dr. The images 

was collected by Biomedical engineering Mansoura University and divided into test, train, validation sets. The dataset 

is used for the classification and identification of DR severity levels by using deep learning models. 

2.Data Preprocessing:  For data preprocessing the preprocess_images function is used from the opencv python 

library. The OpenCV in Python offers a plethora of data preprocessing techniques that are fundamental for preparing 

images and videos for various computer vision tasks. These techniques are crucial for enhancing image quality, 

reducing noise, extracting meaningful features, and improving the performance of subsequent algorithms. 

2.1 Image Resizing:  The image is resized to a fixed dimension of 227x227  pixels using cv2.resize(). This step 

ensures uniformity in image sizes, which is often required for further processing and analysis. 

2.2 Image Normalization:  After resizing, the image pixel values are normalized to be in the range [0, 1] by dividing 

each pixel value by 255.0. This normalization step helps in standardizing the pixel intensity values across all images. 

2.3 Intensity Normalization:   cv2.normalize() is used to normalize the pixel values to the range [0, 255]. This 

normalization is performed using min-max scaling with cv2.NORM_MINMAX normalization type. It ensures that 

pixel values are within the valid range for image processing. 

2.4 Return preprocessed Image: Finally, the function returns the preprocessed image. 

3. Image Enhancement:  For image quality enhancement, the enhance_image function is used from the opencv 

python library. OpenCV in Python offers a range of image enhancement techniques aimed at improving the visual 

quality of images for better analysis and interpretation in computer vision applications. These techniques manipulate 

image properties such as contrast, brightness, sharpness, and color balance to enhance specific aspects of an image. 

3.1 Denoising: The function starts by applying a denoising filter to the input image. noise reduction techniques like 

Gaussian blur (cv2.GaussianBlur()) and bilateral filtering (cv2.bilateralFilter()) can indirectly enhance image 

appearance by smoothing out noise and reducing visual distractions. These techniques improve image clarity and 

facilitate better feature extraction in subsequent processing steps. This step helps in reducing noise present in the 

image, resulting in a smoother appearance. 

3.2 Contrast Adjustment: After denoising, contrast adjustment is performed using cv2.convertScaleAbs. This step 

enhances the contrast of the image by adjusting pixel intensity values. The alpha parameter controls the contrast level, 

while the beta parameter controls brightness. 

3.3 Blur: Gaussian blur (cv2.GaussianBlur) is applied to the contrast-adjusted image. Blurring helps in further 

smoothing out irregularities and noise in the image, leading to a more visually pleasing result. 

3.4 Brightness Adjustment: The function calculates the brightness percentage of the input image by analyzing its 

histogram. If the calculated brightness is below a certain threshold (`brightness < 10`), indicating that the image is 

relatively dark, then the function proceeds to enhance the brightness. 

3.5 Brightness Enhancement: In case the brightness of the image is below the threshold, the function increases the 

brightness by a specified amount (brightness = 20 in this case). This adjustment is achieved using cv2.addWeighted, 

which adds the specified brightness value to the pixel intensities of the image. 

3.6 Return Enhanced Image: Finally, the function returns the enhanced image. If the image's brightness is already 

sufficient (i.e., above the threshold), the function returns the original input image without any further modification. 
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a.before enhancing                          b.after enhancing 

4. Feature Extraction:  Feature extraction in diabetic retinopathy (DR) images plays a vital role in the diagnosis and 

prognosis of the disease. Diabetic retinopathy is a condition where high blood sugar levels damage blood vessels in 

the retina, leading to vision impairment or blindness if left untreated. Feature extraction involves identifying and 

extracting meaningful visual features from retinal images that can help in detecting and classifying DR severity levels. 

4.1  Conversion to uint8:  Before applying Canny edge detection, the denoised image is converted back to uint8 format 

by scaling the pixel values back to the range [0, 255] using (denoised_image * 255).astype(np.uint8). This conversion 

is necessary because Canny edge detection requires uint8 input. 

4.2   Edge Detection (Canny Edge Detection): Canny edge detection is applied to the uint8 denoised image using 

cv2.Canny(). It detects edges in the image by computing gradients and applying hysteresis thresholding. 

4.3  Resizing for Blob Detection: The resulting edge-detected image is resized to 299x299 pixels. This size might be 

suitable for further processing or analysis, such as blob detection. 

4.4  Blob Detection: Blob detection is performed on the resized edge-detected image using 

cv2.SimpleBlobDetector_create() and the configured parameters. Blob detection aims to identify regions of interest 

(blobs) in the image that have distinct visual properties compared to their surroundings. 

4.5  Draw Detected Blobs: Detected blobs are visualized by drawing keypoints on the original edge-detected image 

using cv2.drawKeypoints(). This step overlays the detected blobs on the original image for visualization purposes. 

 

Fig:1 Proposed Architecture 

5. Model Training:  AlexNet is a pivotal convolutional neural network (CNN) architecture that significantly 

influenced the field of deep learning, particularly in image classification tasks. It was developed by Alex Krizhevsky, 

Ilya Sutskever, and Geoffrey Hinton and won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 

2012, marking a breakthrough in the effectiveness of deep learning models. 

5.1 Utilizing AlexNet in Diabetic Retinopathy Image Quality Enhancement: 

The utilization of AlexNet in diabetic retinopathy image quality enhancement aims to harness the power of deep 

learning to improve the clarity and usefulness of retinal images for more precise diagnosis and treatment of diabetic 

retinopathy. 

AlexNet is a pioneering convolutional neural network (CNN) architecture renowned for its success in the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) in 2012. It consists of multiple convolutional and pooling layers 

followed by fully connected layers. 
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The network learns to enhance image quality by discerning relevant features from input retinal images and generating 

enhanced versions that are clearer, sharper, and better suited for accurate diagnosis by medical professionals or 

automated classification systems. 

Through transfer learning, pre-trained AlexNet models can be adapted and fine-tuned on diabetic retinopathy datasets, 

streamlining the development and deployment of customized image enhancement models tailored for diabetic 

retinopathy diagnosis. 

5.2 Feature Reuse: 

AlexNet employs traditional convolutional neural network architecture with specific characteristics that facilitate 

effective feature extraction and reuse. 

Sequential Connectivity: Unlike DenseNet's dense connectivity, AlexNet features sequential layers with increasing 

abstraction levels. Each layer's output serves as the input for subsequent layers, enabling hierarchical feature 

extraction. 

Pooling and Convolution: AlexNet utilizes max-pooling layers to downsample feature maps, capturing dominant 

features, and convolutional layers to extract spatial hierarchies of features. 

Weight Sharing: In AlexNet, weight sharing across layers enables the reuse of learned features, enhancing the 

network's capability to recognize patterns and representations across different regions of the image. 

5.3 Enhancing Early Detection and Diagnosis: 

Leveraging AlexNet for early detection and diagnosis of diabetic retinopathy involves harnessing its architecture's 

capabilities to improve accuracy and efficiency. 

Hierarchical Representation: AlexNet's hierarchical feature extraction enables the capture of both low-level and high-

level features, facilitating the creation of comprehensive representations of retinal images. 

Pattern Recognition: By learning discriminative features from large-scale datasets like ImageNet, AlexNet can 

effectively identify subtle patterns indicative of early-stage diabetic retinopathy, aiding in timely diagnosis and 

intervention. 

Adaptive Learning: The adaptability of AlexNet through fine-tuning allows for customization to specific medical 

imaging tasks, enhancing its efficacy in early detection and diagnosis scenarios. 

Model Architecture: 

 

fig:2 AlexNet model architecture 

AlexNet is a convolutional neural network architecture designed by Alex Krizhevsky, Ilya Sutskever, and Geoffrey 

Hinton, which won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012, significantly 

advancing the state-of-the-art in image classification. Here's an overview of its architecture: 

Input Layer: Accepts the input image data. In the original implementation, the input size is 227x227x3 (RGB images 

of size 227x227 pixels). 

Convolutional Layers: AlexNet has five convolutional layers, followed by max-pooling layers. The convolutional 

layers use filters of various sizes to extract features from the input images. These layers are designed to capture 

different levels of abstraction in the image. 

Max Pooling Layers: Following each convolutional layer, there are max-pooling layers which downsample the feature 

maps obtained from the convolutional layers. Max pooling helps in reducing the spatial dimensions of the feature 

maps while retaining important information. 

Normalization Layers: Local Response Normalization (LRN) layers are used after the first and second convolutional 

layers. These layers help in normalizing the responses and enhancing the contrast between different features. 

Fully Connected Layers: AlexNet has three fully connected layers with 4096 neurons each. These layers take the high-

level features extracted by the convolutional layers and learn to classify the input image into various categories. The 
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last fully connected layer produces the final output, typically representing the probability distribution over different 

classes. 

Softmax Layer: The output layer of the network uses the softmax function to convert the raw scores produced by the 

previous layer into probabilities, representing the likelihood of the input image belonging to each class. 

Dropout: Dropout regularization is applied to the fully connected layers during training to prevent overfitting. It 

randomly drops a certain percentage of neurons during each training iteration, forcing the network to learn more 

robust features. 

Overall, AlexNet played a pivotal role in popularizing deep learning and convolutional neural networks for image 

classification tasks, demonstrating the effectiveness of deep learning models in handling large-scale visual recognition 

challenges. 

6. Final Prediction:  Our trained DenseNet model excelled in predicting severity levels of diabetic retinopathy (DR) 

by leveraging key features such as exudates, Microaneurysms, Hemorrhages, Cotton Wool Spots and other 

pathological indicators extracted from retinal images. This capability holds significant promise for guiding further 

treatment strategies tailored to individual patients' disease severity. With an impressive accuracy rate the model 

provides a reliable means of stratifying patients based on the progression of DR. By accurately identifying the severity 

level, clinicians can make informed decisions regarding the urgency and type of intervention required, optimizing 

patient care pathways. This predictive ability not only aids in timely treatment initiation but also facilitates proactive 

management of DR, potentially mitigating the risk of vision loss and improving long-term patient outcomes. 

7. Report:  After accurately predicting the severity level of the retinal image, the trained DenseNet model offers 

tailored treatment guidelines corresponding to the identified severity level. These guidelines are designed to assist 

clinicians in making informed decisions regarding patient care, ensuring timely intervention and personalized 

management strategies aligned with the severity of diabetic retinopathy. The treatment guidelines are as follows based 

on severity. 

7.1 no_DR: No signs of diabetic retinopathy observed. 

Treatment: No treatment required at this stage. Continue regular diabetic monitoring and management to prevent 

progression. 

7.2 mild_DR: Microaneurysms and slight retinal swelling observed, but no significant vision impairment. 

Treatment: Management typically involves controlling blood sugar levels, blood pressure, and cholesterol. Regular 

eye exams (every 6-12 months) are recommended. 

7.3 moderate: Significant retinal changes such as retinal swelling, venous beading observed. 

Treatment: Management typically involves controlling venous beading, blood sugar levels, blood pressure by using 

medicines. Regular eye checkups are recommended. 

7.4 severe: Significant retinal changes such as intraretinal hemorrhages, venous beading, and cotton wool spots 

observed. 

Treatment: Laser photocoagulation therapy may be recommended to reduce the risk of vision loss. Tight control of 

blood sugar levels and blood pressure is crucial. 

7.5 proliferate_DR: Neovascularization (growth of abnormal blood vessels) observed, increasing the risk of vision loss 

due to vitreous hemorrhage or retinal detachment. 

Treatment: Laser surgery (panretinal photocoagulation) is often performed to shrink abnormal blood vessels and 

reduce the risk of bleeding. Intravitreal injections of anti-VEGF drugs may also be used to prevent further 

neovascularization. 

5. RESULT 

The AlexNet model developed for the identification  of severity levels of diabetic retinopathy (DR), including no_DR, 

mild, moderate, severe, proliferate_DR. 

 

a. noDR                            b. mild 
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c. moderate                       d. severe 

 

e. Proliferate_DR. 

4.1 Performance Metrics:  Performance metrics are crucial for evaluating the performance of trained model. The 

performance of the proposed and existing approaches were evaluated using a confusion matrix. The true positive (TP), 

true negative (TN), false positive (FP), and false negative (FN) values were taken from the confusion matrix. They 

are: 

i. Precision is the ratio of correctly predicted positive observations to the total predicted positive observations. 

ii. Precision=TP/FP+TP 

iii. Recall is the ratio of correctly predicted positive observations to all actual positives. 

iv. Recall=TP/TP+FN 

v. The F1-score is the harmonic mean of precision and recall. The F1-score takes into account both false positives 

and false negatives. It's a better measure than accuracy when the classes are imbalanced. 

F1-Score=2xPrecision*Recall/(Precision+Recall) 

iv.  The Support metrics are fundamental components of performance evaluation in deep learning models, particularly 

in tasks like classification. Support metrics are derived from the counts of true positives (TP) and false negatives (FN). 

Support = TP + FN 

Level precision recall f1-score support 

0 0.56 0.65 0.60 37 

     

1 0.21 0.38 0.27 26 

2 0.12 0.47 0.20 133 

3 0.29 0.38 0.33 300 

4 0.62 0.22 0.33 744 

4.2 analysis: 

i. Train and valid accuracy: 
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ii. train and valid loss: 

 

6. CONCLUSION 

The enhancement of retinal images through Opencv and identifying severity levels in diabetic retinopathy through 

utilization of trained model AlexNet marks a significant stride in the domain of medical image analysis. Achieving an 

accuracy rate of 87% underscores the efficacy of this approach in aiding clinicians to make more precise diagnoses 

and treatment decisions promptly. AlexNet's hierarchical feature extraction mechanism, facilitated by its sequential 

connectivity, enables the discernment of subtle abnormalities within retinal images. This capability proves 

instrumental in enhancing the visibility of key indicators of diabetic retinopathy, including microaneurysms, 

hemorrhages, and exudates, thereby facilitating more accurate assessments of disease severity.Early detection and 

appropriate management of diabetic retinopathy are paramount in preserving vision and preventing irreversible ocular 

damage. Our model's assessment underscores the urgency of intervention in severe cases of diabetic retinopathy and 

provides valuable guidance for personalized treatment planning and patient care. 

7. REASEARCH CHALLENGES & FUTURE SCOPE 

We highlighted challenges encountered during model development and deployment, such as data imbalance and 

interpretability issues. data imbalance refers to an unequal distribution of samples among different classes within the 

dataset. In the context of diabetic retinopathy, this means that certain severity levels of the condition may be 

represented by significantly fewer images compared to others. For instance, mild cases of DR might be more prevalent 

in the dataset than severe cases. This imbalance can skew the learning process of the model, potentially leading to 

biased predictions where the minority classes are frequently misclassified.To address this issue, we employed various 

techniques such as data augmentation, resampling methods, and class-weighted loss functions during model training. 

These methods aimed to provide the model with a more balanced representation of different severity levels, thereby 

improving its ability to generalize across all classes.Future research directions, including multi-modal integration (e.g., 

combining fundus images with patient metadata) and ensemble learning approaches, were suggested to further 

improve performance. 
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