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ABSTRACT 

In a graph G , a list assignment L  is a function that it assigns a list ( )L v of colors to each vertex 

( ).v V G  An 
*( , )L d −coloring is a mapping   that assigns a color ( ) ( )v L v   to each vertex ( )v V G   so 

that at most impropriety  d   neighbors of v are the same  color with  ( )v .  A graph G   is said to be 
*( , )k d −  

choosable if it admits an 
*( , )L d −coloring for every list assignment L  with | ( ) |L v k  for all ( )v V G . In this 

paper, we prove that every planar graph with neither adjacent triangles nor 7-cycles is 
*(3,1) − choosable. In 2016, 

Min Chen, Andre Raspaud and Weifan Wang proved that every planar graph with neither adjacent triangles nor 6-

cycles is 
*(3,1) − choosable. 

Keywords: Planar Graphs, Improper Choosability, Cycle. 

1. INTRODUCTION 

A −k  coloring of  G  is a mapping   from ( )V G  to a color set {1, 2,..., }k such that ( ) ( )x y  for 

any adjacent vertices x  and y.
 
A graph is k colorabe−  if it has a .k coloring−  Cowen et al.(1986) considered 

defective coloring of graphs. A graph G  is said to be d improper−  ,k colorable−  or simply, 

*( , ) ,k d colorable−  if the vertices of  G  can be colored with k  colors in such a way that vertex has at most d  

neighbors receiving the same color as itself. Clearly, a  
*( ,0)k coloring−  is an ordinary proper .k coloring−  

A list assignment of  G  is a function L  that assigns a list ( )L v  of colors to each vertex ( ).v V G  An 

L coloring−  with impropriety of integer ,d  or simply an 
*( , ) ,L d coloring−  of  G  is a mapping    that 

assigns a color ( ) ( )v L v   to each vertex ( )v V G  so that at most d neighbors of v  receive color ( ).v  A 

graph is k choosable−   with impropriety of integer ,d  or simply 
*( , ) ,k d choosable−  if there exists an 

*( , )L d coloring−  for every is just the ordinary k − choosability introduced by  Erdös et al. (1979) and 

independently by Vizing (1976). A famous and classic result given by Thomassen (1994) is that every planar graph is 

*(5,0) − choosable. However, Voigt (1993) showed that not all planar graphs are 
*(4,0) − choosable by 

establishing a non
*(4,0)− −choosable planar graph. 

In 1999, Šrekovski(1999a) and Eaton and Hull (1999) independently introduced the concept of list improper 

coloring. They showed that planar graphs are 
*(3,2) − choosable and outerplanar graphs are 

*(2,2) − choosable. 

They are both improvement of the results shown in Cowen et al. (1986) which say that planar graphs are 
*(3,2) −

colorable and outerplanar graphs are 
*(2,2) colorable.  Note that there exist non

*(2,2)− − colorable planar graphs 

and non
*(2,1)− − colorable outerplanar graphs which were constructed in Cowen et al. (1986). Let ( )g G  denote the 

girth of a graph ,G  i.e., the length of a shortest cycle in .G  The 
*( , )k d − choosability of planar graph G with given 

( )g G  has been investigated by Šrekovski (2000). He proved that every planar graph G  is 
*(2,1) −  choosable if 

( ) 9,g G  *(2,2) −  choosable if ( ) 7,g G   
*(2,3) − choosable if ( ) 6,g G   and 

*(2, )d −  choosable if 
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4d  and ( ) 5.g G   The first two results were strengthened by Havet and Sereni (2006) who proved that every 

planar graph G  is 
*(2,1) −  choosable if ( ) 8g G   and 

*(2,2) −  choosable if ( ) 6.g G   Recently, Cushing and 

Kierstead (2010) proved that every planar graph is 
*(4,1) −  choosable. So it would be interesting to investigate the 

sufficient conditions of 
*(3,1) −  choosability of subfamilies of planar graphs where some families of cycles are 

forbidden. Šrekovski proved in Šrekovski  (1999b) that every planar graph without 3-cycles is 
*(3,1) −  choosable. 

Lih et al. (2001) proved that planar graphs without 4- and l − cycles are 
*(3,1) − choosable, where {5,6,7}.l  

Later, Dong and Xu (2009) proved that planar graphs without 4- and l −  cycles are 
*(3,1) −  choosable, where 

{8,9}.l  These two results were improved further by Wang and Xu (2013) who showed that every planar graph 

without 4-cycles is 
*(3,1) −  choosable. More recently, Chen and Raspaud (2014) proved that every planar with 

neither adjacent 4-cycles nor 4-cycles adjacent to 3-cycles is 
*(3,1) −  choosable. This absorbs above results in Lih et 

al. (2001), Dong and Xu (2009), Wang and Xu (2013). Then, Min Chen, Andre Raspaud and Weifan Wang (2016) 

proved that every planar graph with neither adjacent triangles nor 6-cycles is 
*(3,1) −  choosable. 

Theorem 1.1 Every planar graph with neither adjacent triangles nor 7-cycles is 
*(3,1) −  choosable. 

The proof of Theorem 1.1 is done in the section 3. 

2. NOTATION 

All graphs considered in this paper are finite, simple and undirected without multiple edges. Call a graph G  

planar if it can be embedded into the plane so that its edges meet only at their ends. Any such particular embedding of 

a planar graph is called a plane graph. For a plane graph ,G  we use , , ,V E F   and    

( ( ), ( ), ( ), ( ), ( ))V G E G F G G G   to denote its vertex set, edge set, face set, maximum degree and minimum 

degree, respectively. For a vertex ,v V   the degree of v  in G , denoted by ( ),Gd v   or simply ( ),d v  is the 

number of edges incident with v  in G .  | ( ) |V G  and | ( ) |E G  are order and size. The neighborhood of v  in ,G  

denoted by ( ),GN v  or simply ( ),N v  consists of all vertices adjacent to v  in .G  Call v  a k − vertex, or a k+ −  

vertex, or a k− −  vertex if  ( ) ,d v k=  or  ( ) ,d v k  or ( ) ,d v k  respectively. A similar notation will be used for 

cycles and faces. For a face ,f F  the number of edges of the boundary of  f   (where cut edge, if any, is counted 

twice), denoted by ( )d f , is called the degree of f . Analogously, the notations above for vertices will be applied to 

faces. We write 1 2...[ ]kf v v v=  if  1 2, ,..., kv v v  are consecutive vertices on f  in a cyclic order, and say that f  is 

a 1 2( ( ), ( ),..., ( ))kd v d v d v − face. Next, let if  be the face with ivv  and 1ivv +  as two boundary edges for 

1, 2,..., ( ),i d v=  where indices are taken modulo ( )d v  and define ( ) 1 1.d v + =  Let v   be a vertex, and  v   is a 3-

vertex  in G  such that  the three neighbors vertices adjacent with .v  An edge xy  is called a ( ( ), ( ))d x d y − edge, 

and x  is called a ( )d x − neighbor of .y   A k − cycle is a cycle of length .k  In this paper, a 3-face is often called a 

triangle. Call a vertex or an edge triangular if it is incident with a triangle. Otherwise, a vertex or an edge iso-

triangular if it is not incident with a triangle but its neighbor vertex is incident with triangle. Then 4-face is often 

called a quadrilateral.  Two cycles or two faces are intersecting if they have at least one vertex in common; and are 

adjacent if they have at least one edge in common. Again, 4-face is called a quadrilateral in which two triangles are 

adjacent.  We define the following notation: 

• Let u  be a 4-vertex. If u  is incident with 1,f  2 ,f  3f  and 4f  so that 1 1 2[ ] (3,4,5 )f uu u += = − face 

and then 3( ) 4d f =  and 2 4( ) ( ) 8d f d f += = − face. It is called 4-light vertex. Shown in Figure 1. 
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Definition 2.1 Let f  be 3-face such that 1 2[ ]f uu u= and fe be an edge incident with .f  

i.e., 
1
,uue  

2
,uue  

1 2u ue  can be written by .fe  

Definition 2.2      

• A 3-vertex is said to be poor if it is incident with one 3-face and two 4-faces. Then it is called 3-poor. 

• Let u  be a 4-vertex and 1 2[ ]f uu u=  be a 3-face. If u  is incident with one 3-face, one 4-face and one 5 face 

adjacent with fe  and another is 6-face, then it is said to be 4-poor. (OR) 

•  A 4-vertex is said to be poor if it is incident with one 3-face and two of  fe  incident with one 4-face and one 5-

face and another is 6-face. Then it is called 4-poor. 

•  Let u  be a 5-vertex and 1 2[ ]f uu u=  be a 3-face. If  u  is incident with one 3-face and both one 4-face and one 

5-face adjacent with fe  and others' two are 6+ − face and 5+ − face, then it is said to be  5-poor. 

(OR) 

       A  5-vertex is said to be poor if it  is incident with one 3-face and two of  fe  incident with one 4-face and one 

5-face and others are incident with 6+ −  face and 5+ − face. Then it is called 5-poor. 

Definition 2.3   

• A 3-vertex is said to be semi-poor if it is incident with three 4-faces. Then it is called 3-semi-poor. 

•  A 4-vertex is said to be semi-poor if it is incident with one 3-face adjacent to one 4-face and one 4-face adjacent 

to one 3-face. Then it is also called a semi-poor-I vertex. 

•   A 4-vertex is said to be semi-poor if it is incident with one 3-face adjacent to one 4-face and one 4-face adjacent 

to one 4-face. Then it is also called a semi-poor-II vertex. 

•  A 4-vertex is said to be semi-poor if it is incident with one 3-face adjacent to one 5-face and one 4-face adjacent 

to one 3-face. Then it is also called a semi-poor-III vertex. 

• A 4-vertex is said to be semi-poor if it is incident with one 3-face adjacent to one 5-face and one 4-face adjacent to 

one 4-face. Then it is also called a semi-poor-IV vertex. 

Definition 2.4 

• A 3-vertex is said to be full-poor if it is incident with one 3-face, one 5-face and 8+ − face. Then it is called 3-

full-poor. 

• A 4-vertex is said to be full-poor if it is incident with one 4-face adjacent to one 3-face and one 4-face adjacent to 

one 3-face. Then it is also called a full-poor-I vertex. 

• A 4-vertex is said to be full-poor if it is incident with one 4-face adjacent to one 3-face and one 4-face adjacent to 

one 4-face. Then it is also called a full-poor-II vertex. 

 
 

Figure 1: 
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• A 4-vertex is said to be full-poor if it is incident with one 4-face adjacent to one 4-face and one 4-face adjacent to 

one 4-face. Then it is also called a full-poor-III vertex. 

            

 

 

 

 

 

 

 

 

 

                 

                                          

                                                             

  

 

 

 

 

 

 

Figure 2: 

3-poor 3-semi poor 
 

3-full poor 

Figure 3: 

4-poor 

4-semi poor I 4-semi poor II 

Figure 5: 

4-full  poor I 4-full poor III 4-full  poor II 

Figure 6: 

5-poor 

-face -face 

Figure 4: 

4-semi poor III 
4-semi poor IV 
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Theorem  2.5 (Chen [1]).  Every planar graph neither adjacent triangle nor 6 cycle is 
*(3,1) − choosable. 

Theorem  2.6 (Chen [2]).  Every planar graph without 4-cycles adjacent to 3- and 4-cycles is 
*(3,1) − choosable. 

Lemma  2.7 (Lih, Wang, Zhang  [9]).   

 ( A 1) ( ) 3.G   

( A 2) No two adjacent 3-vertices. 

Lemma 2.8   Let f
 
be (3,4,5)-face. Then all vertices of f  are poor. 

 Proof:  Let [ ] (3, 4,5)f xyz= = − face and then 1 ( ),x N x  1 2, ( )y y N y  and 1 2 3, , ( ).z z z N z   Suppose  

to the contrary that there is no poor vertex of f in .G  Let 1 1 2 1 2 3{ , , , , , , , , }.G x y z x y y z z z =  By minimality of 

,G  suppose that G G−  has an 
*( ,1)L − coloring of .  

 First, for ( ) 3,d x =  without loss of generality, let 1 1xx y y be a quadrilateral and xze  be not incident with 4-

face. We may provide the colors 1 1( ) ( ) ( ) 1y x z  = = = and 1( ) ( ) 2.y z = = We must have the color 

( )x with 1( ) { ( ) ( ) ( )}.L x y z x  U U  So, we choose the color ( )x with 3. If we recolor 1( )x  with 

1 1 1( ) { ( ) ( )},L x y x  U  then we will get the color of the same ( ).x If we recolor 1( )x  with 3, we can 

exchange the colors ( )x  and ( )z However, since xze is not incident with 4-face, it means that it is incident with 

8-face. So, 1y  and 1x can be adjacent to each other. If 1 1 1y x x  is a triangle, we must have the color 1( )x   with 3. 

So, it is impossible for the color 1( )x  with 3. If 1 1 1y x x  is not a triangle, 1 2y yy  can be a triangle. So, we can 

assume that the colors 1( )x and 2( )y with 3. Since xze  is not incident with 4-face, so 1 1.x z   So, we could 

have  the colors 1( )x  and 1( )z  are the same. Then we change the colors ( )z and 1( ).z  It is contradiction for  

x  vertex. 

Secondly, for ( ) 4d y =  and ( ) 5,d z =  we have proved that x  is a poor vertex. Without loss of generality, 

we have 1 1x xyy  and 1 1x xzz  are quadrilaterals and then we cannot have both 1 2yy y   is a triangle and 1 2yy y  is a 

quadrilateral. So, we may assume that 2 3zz z  is a triangle. Since yze  is not incident with 4-,5-,6-faces. Without loss 

of generality, let 1 2( ) ( ) ( )L x L y L y= =  1( ) {1,2,3},L z= =  2( ) ( ) {1,2,4},L y L z= =

1( ) ( ) {1,3,4}L z L x= =  and 3( ) {2,3,4}.L z =  If we provide the colors 1 2 2( ) ( ) ( ) 1,y y z  = = =  

1( ) 3z =  and 3( ) ( ) 2,y z = =  then we must have the colors 1( )x  with 4 and ( )z  with 4. We can give 

the color ( )x  with 1( ) { ( ) ( ) ( )}L x y z x  U U .  If we recolor ( )y  with 4, we must exchange the colors 

3( )z  and ( ).z  However, 2 ( ).L z  It is impossible. Thus, it is contradiction by assumption. Therefore, the 

proof is complete.            

Lemma 2.9 If f  be a (4,4,4,4)-face, then every vertex of 4-face can be a 4-light vertex. 

 Proof: Let [ ]xyzw be a 4-face in which every vertex is a 4-vertex. Assume that ,ix ,iy  iz  and iw are the neighbors 

of , , , ,x y z w  composing of a triangle with their neighbors  where {1, 2}.i Suppose to the contrary that none of 

, , ,x y z w  is a 4-light vertex such that ( ) 4,id A   where { , , , },i i i i iA x y z w= {1, 2}.i = Let 

{ , , , , , , , },i i i iG x y z w x y z w =  {1, 2}.i =  By the minimality of ,G G G−  admits an 
*( ,1)L −  coloring of  .   
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We will consider two cases. 

Case (i)  We may give colors with ( )x  and ( )z  are the same and ( )y  and ( )w  are also. So, let 

( ) ( ) 1x z = = and ( ) ( ) 2.y w = =  Thus, we can deduce that ( ) {2,3}ia  and ( ) {1,3},ib   where 

{ , }i i ia x z=  and { , },i i ib y w=  {1, 2}.i  We consider three sub-cases in the following. 

Sub-case (i)  Firstly, for x  we will consider 1x and 2x have to be incident with only one triangle. By assumption, 

we have 1 2[ ] (3,4,4)x x x = − face.  We must have the colors 1 2 2{ ( ), ( ), ( )} {1,2,3}.x x x       If 1 1 2 2x x x x   is a 

quadrilateral, we cannot give the same colors 

1( ),x   2( )x   and 2( ).x   So, we may assume that 2( ) ( ) 1,x x  = =  1 1( ) ( ) 2,x x  = =  

1 1 2( ) ( ) ( ) 1.x x x    = = =  Here, we must have the colors 2( ) 2.x  =  If we exchange the colors 2( )x  and 

2( ),x    we must recolor ( )x  with 2 or 3. Clearly, ( ) 2x =  is impossible. So, we must have the color ( )x

with 3. Moreover, secondly, for the vertex y we will consider 1y and 2y have to be incident with only one triangle. 

We may assume that 1( ) 1,y =  2( ) 3.y =  If 1 1 2 2y y y y   is a quadrilateral, we have different colors between 1y

and 2.y So, if we assume that 2 2( ) ( ) 2,y y  = = we must have the colors 1( )y  with 3. Clearly, we have 

1( ) 1y = and 2( ) 3y = If we exchange the colors 2( )y and 2( ).y   We must recolor ( )y with 3. It is 

contradiction by assumption.  

Sub-case (ii)  For the vertex ,x we will consider 1x and 2x have to be incident with triangle. We must have the 

colors 1 2 2{ ( ), ( ) ( )} {1,2,3}.x x x       Let 2 2 2x x x  be a triangle and be a 1 1 2 2x x x x  quadrilateral. We may 

assume that 1( ) 2,x =  2( ) 3,x = 1 2( ) ( ) 1.x x  = =  Here, we must have the color 2( ) 2.x  =  If we 

exchange the colors 1( )x  and 1( ),x  and then the colors 2( )x  and 2( ),x  we must recolor ( )x  with 3. 

Moreover, for the vertex y we will consider 1y  and 2y have to be incident with triangle. Let 2 2 2y y y be a triangle 

and 11 2 2y y y y  be a quadrilateral. We may assume that 1( ) 1,y =  2( ) 3y = and 1 2( ) ( ) 2.y y  = =  So, we 

must have the color 2( ) 1.y  = If we exchange the colors ( )y and 1( ),y  it is impossible for 1( ) {1,3}.y    

Thus, we  will exchange the colors ( )y and  2( )y .  It is contradiction by assumption. 

Sub-case (iii)  For the vertex ,x  we will consider 1x
 
and 2x to be incident with three triangles. Obviously, 1x  and 

2x do not be incident with any quadrilateral. Let 1 2( ) ( ) 2x x  = = and 1( ) 3.x  =  We must have the colors 

2( )x  with 3 and 2( )x   with 1. Similarly, we will consider the vertex .y Let 1 2( ) ( ) 1y y  = = and 

1( ) 2.y  =  We must obtain the colors 2( )y with 3 and 2( )y   with 2. If we recolor any vertex, it is very strict. 

Since ix  and iy where {1, 2},i  are incident with only 8+ − face, any neighbor of 1,x  2x  and 2x and any 

neighbor of 1y and 2y cannot be adjacent to each other. Here, ( ,1)L − coloring is satisfied. Thus, it is contradiction. 

It is enough to prove only two vertices x  and y .  

Case(ii)  We may give colors with ( )x  and ( )y are different. So, let ( ) 1x = and ( ) 2z = and ( ) 3y = and 

( ) .w a = We must have the colors ( ) {2,3},ix  ( ) {1,2},iy   and ( ) {1,3},iz  where {1, 2}.i  

Suppose that 3.a =  We must have ( ) {1,2}.iw   If we exchange the colors ( )x and 1( ),x  we must have 

colors ( ) {2,3}.x   If we have the colors ( )x  with 3, it is impossible because of ( ) 3.y =  So, there is the 

color ( )x  with 2. If we exchange the colors ( )y and 1( ),y  we must have colors ( ) {1, 2}.y   If we have a 

color ( )y  with 2, it is impossible. So, there must be the color ( )y  with 1. If we exchange the colors ( )z  and 



 

INTERNATIONAL JOURNAL OF PROGRESSIVE 

RESEARCH IN ENGINEERING MANAGEMENT 

AND SCIENCE (IJPREMS) 

 

Vol. 04, Issue 09, September 2024, pp: 312-330 

e-ISSN : 

2583-1062 

Impact 

Factor: 

5.725 
www.ijprems.com 

editor@ijprems.com 
   

@International Journal Of Progressive Research In Engineering Management And Science                 Page | 318  

1( ),z we must have colors ( ) {1,3}.z   It is impossible for two of ( ) {1,3}.z   So, we must recolor the 

colors ( )w with ( ) \{ ( ) ( ) ( )}.iL w w x z  U U  Thus, it is contradiction for suggestion. 

Similarly, for the vertex z  and ,w  we can deduce that the resulting coloring is an 
*( ,1)L − coloring, which 

is a contradiction. Therefore, the proof is complete.  

Lemma 2.10 Let f  be a 3-face by (3,4,4 )+ − face. 

(i) If 3-vertex is a 3-poor vertex, then none of two 4-vertices is a 4-semi-poor vertex. 

(ii) If a 3-vertex is a 3-poor vertex, then the neighbors of the third vertex not on fe  is 4+ − vertices. 

(iii) If a 3-vertex is a 3-poor vertex, then at most one vertex of the neighbors of  two 4-vertices is 3-vertex. 

Proof: Let 1 2[ ] (3,4,4 )f uu u += = − face and 1 2 3( ) { , , }N u u u u=  and ( ) { , }i i iN u u u = where {1, 2}.i =  

We will prove the first ( ).i  Let u  be a 3-poor vertex. Suppose to the contrary that iu  is a 4-semi-poor vertex in 

which {1, 2}.i =  We note that iu  has a 4-vertex incident iu  and iu  and then iu  is incident with 3u  Let 

1 2 1 1 2 2 3{ , , , , , , , }.G u u u u u u u u    =  By minimality of ,G  suppose that G G− has an 
*( ,1)L − coloring of  .

Without loss of generality, let 2 1( ) ( ) ( ) 1,u u u   = = =  1 2( ) ( ) 2u u  = =  and 2 1( ) ( ) 3.u u  = =  Since 

3| ( ) | 1,L u  so we can assign the color 3( )u  with 2 or 3. If we recolor ( )u  with 2, then we must assign the color 

1( )u with 1. But 1( ) 1.u  =  So, we must assign the color 1( )u  with 2 or 3. Here, by assumption, 1 1 1u u u   must 

be a quadrilateral. So, ( )   must be 2. Hence we must assign the color 1( )u   with 3.  If we choose the colors 

1( )u  with 3 and 3( )u  with 2, we must assign the color 1( )u   with 2. If we choose the colors 1( )u  with 2 and 

3( )u  with 3, then we must assign the color 1( )u  with 3. If we recolor ( )u  with 3, then we must assign the 

color 1( )u with 2 or 1. If we choose 1( )u with 2 and 2( )u with 1, then we must assign the color 1( )u   with 1 

or 3 and 2( )u  with 2 or 3. If we choose the color 1( )u  with 3, then we must assign the color 1( )u  with 2. Thus, 

it is contradiction by assumption. If we choose the color 1( )u   with 1, then we must assign the colors 1( )u  with 3 

and 3( )u  with 2. If we choose the colors 2( )u   with 3 and 2( )u   with 3, then it is contradiction by assumption. 

If we choose the color 2( )u   with 2 and 2( )u   with 3, then it is contradiction.  

We will prove the second ( )ii  and  ( )iii  simultaneously. Here, since 3u  is incident with two 4-faces by 

Theorem 1.1 , so cannot be incident with any 4-faces. Thus, we have to know that it could be incident with 6+ −

faces. So, 3( ) 4d u  and 1 2( ) ( ) 3.d u d u = =  However, 1u  and 2u cannot be adjacent to 3-vertex because of  1u  

and 2u  are not 4-poor vertices. Therefore, the  proof is complete.  

Lemma 2.11 Let u  be a 3-vertex in a graph G . If u  is a 3-semi poor vertex, then none of 4-face incident with 

u  can be adjacent to 

(i)  a 4-poor vertex, 

(ii)  a 4-semi poor I vertex and  

(iii)  a 4-semi poor III vertex. 

 Proof:  Let u  be a 3-semi poor vertex in a graph G  and 1 1 2[ ],f u uu x=   2 2 3[ ]f u uu y= and 3 3 1[ ]f u uu z=  and 

then 1 2 3( ) { , , }.N u u u u=  We will prove first condition (i). Suppose to the contrary that all of 1,f  2f  and 3f  are 

incident with 4-poor vertex.  Firstly, we will prove a 4-poor vertex incident with 1,f 2f  and 3f . Without loss of 

generality, suppose that all of 1,f   2f  and 3f are incident with a 4-poor vertex. Here, obviously we will assume that 

each of ,x  y  and z is incident with a 4-poor vertex. We will consider a  vertex by contraction of ,x  y  and .z  So, 



 

INTERNATIONAL JOURNAL OF PROGRESSIVE 

RESEARCH IN ENGINEERING MANAGEMENT 

AND SCIENCE (IJPREMS) 

 

Vol. 04, Issue 09, September 2024, pp: 312-330 

e-ISSN : 

2583-1062 

Impact 

Factor: 

5.725 
www.ijprems.com 

editor@ijprems.com 
   

@International Journal Of Progressive Research In Engineering Management And Science                 Page | 319  

let 1 2( ) { , }.N a a a= Continuously, we may construct each triangle incident with a  such as 1 1 ,u x x  2 1u yy and 

3 1.u zz Then 2a  is incident with both 5-face and 6-face. Let 1 2 3 1 2{ , , , , , , }.G u u u u a a a =  By minimality of ,G  

suppose that G G−  has an 
*( ,1)L − coloring of  .  We will consider two cases. 

Case ( ).i   We may assume that 1( ),u  2( ),u and 3( ),u are the same colors and ( ),x  ( )y and 

( )z are the same. So, we may assign the colors 1( ),u  2( )u  and 3( )u with 1 and then the colors ( ),x  

( )y and ( )z  with 2. Here, we must assign the color ( )u  with 1 2 3( ) { ( ), ( ), ( )}L u u u u    and we must 

assign the color 1( )a  with 3. Evidently, 5-face is 3-coloring and 6-face is 2-coloring. So, we must assign the colors 

2( )a  with 1. Here, we will assign the color ( )u with 3. Here, we must have all colors ( ),x  ( )y  and ( )z  

with 2. If we exchange the colors ( )u  and 1( ),u we must recolor 2( )u with 2 2( ) { ( )},L u u   3( )u with 

3 3( ) { ( )}L u u   and 1( ),x  with 1 1( ) { ( )}.L x x   Since 2( ) 1,x = it must be 1( ) 1.x  =  Now, we can 

have the color 1( )x  with 2. It is contradiction. Moreover, since 2u  and 3u  are incident with 6-face and we have 

that 6-face is 2-coloring, they must be the colors 2( )u  and 3( )u   with 2. So, we must have the colors 2( )u  and 

3( )u  with 3. It is contradiction. 

  Furthermore, since | ( ) | 3,L u =  we must assign the color ( )u  with 2. If we exchange the colors ( )u  

and 1( )u  we must recolor 2( )u with 2 2( ) { ( )}L u u   and 3( )u  with 3 3( ) { ( )}.L u u   So, we must 

have the colors 2( )u  and 3( )u with 3. Then, we will exchange the colors ( )x  and 2( ).x   However, it is 

contradiction by assumption. 

Case ( ).ii   We may assume that 1( ),u  2( )u  and 3( )u  are different. Evidently, we must have the colors 

( ),x ( )y  and ( )z  are different. We may assume that the colors 1( )u with 1, 2( )u  with 2 and 3( )u with 

3. So, we must have the colors ( )x with 3, ( )y  with 1 and ( )z  with 2 and then continuously we must have the 

colors 1( )x  with 2, 1( )y  with 3 and 1( )z  with 1. If we assign the color ( )u  with 1, then we must recolor 

1( )u with 1 1( ) { ( )}.L u u   Thus, we must have the color 1( )u  with distinct  1( ).u   Here, it is 

contradiction. 

If we assign the color ( )u   with 2, then we must recolor 2( )u with 2 2( ) { ( )}.L u u   Here, we 

must have the color 2( )u  with distinct 2( ).u   However, it is contradiction. If we assign the color ( )u with 3, 

then we must recolor 3( )u  with 3 3( ) { ( )}.L u u   Here, we must have the color 3( )u  with distinct 3( ).u   

However, it is contradiction. 

Finally, for the condition ( )ii and ( )iii  are similar as the proof of the condition ( ).i   

Therefore, the proof is complete.  

Corollary 2.12 Suppose to v is a 3-semi-poor vertex in which 1 1 2[ ],f vv xv= 2 2 3[ ]f vv yv=  and 3 3 1[ ].f vv zv=  

If the three vertices of ,x y  and z  are 3-semi-poor vertices, then the three vertices of 1,v  2v  and 3v  are  5+ −

vertices. 

Lemma 2.13 Let v  be 3-vertex, 1 2 3( ) { , , }N v v v v=  and  1 2[ ].f vv v=   If v  is a 3-full-poor vertex in which 

1v  and 3v  are incident with 5-face, then 

(i) the three neighbors of v  are  4
+ − vertices (i.e., ( ( )) 4)d N u   and 

(ii)  exactly the vertex 1v  is either a 4-poor vertex or a 5-poor vertex. 
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Definition 2.14  (i)  A vertex u  is a ( )d u − vertex incident with at most n −  triangles and others are any faces. Its 

vertex  is called 
nT  − vertex. 

 Here, | |nT  = the number of n − triangles incident with a vertex 

(ii)  A vertex u  is ( )d u − vertex with ( ) 4d u   in which u  is incident with exactly 
( )

2

d u 
 
 

 3-faces and exactly 

( )

4

d u 
 
 

4-faces. It is said to be a 
( )d uT − vertex. Evidently, if ( )d u  is odd, then every 4-face must be incident 

between two 3-faces. 

Note that : If u  is a 3-vertex incident with one 3-face and one 4-face or one 5-face, then another is one 8+ − face. It 

is called 
1T  − vertex. 

Lemma 2.15 Let u  be 
( )d uT − vertex in .G  

Conditions:  (i) If u  is 
( )d uT − vertex ( ( ) 3d u = ), then it is incident with distinct one 3-face, one 4-face and 

one 8+ − face. It is called a special 
3T − vertex. 

The following conditions: 

Let u  be 
( )d uT − vertex in G  with ( ) 4.d u   

(ii) If u  is 
( )d uT − vertex ( ( ) 4d u = ), then it is incident with distinct two 3-faces, one 4-face and one 8+ −

face. 

(iii)  If u  is 
( )d uT − vertex (where ( ) 5d u = ), then it is incident with distinct two 3-faces, one 4-face, and then 

others are 5+ − faces. 

(iv)  For ( ) 6,d u   if u  is a  
( )d uT − vertex and ( )d u  is odd, then it is incident with at most two 5+ − faces 

and others are incident with at most 
( ) 1

1
4

d u − 
− 

 
 8+ − faces. 

(v)  For ( ) 6,d u   if u  is a  
( )d uT − vertex and ( )d u  is even, then it is incident with at most 

( )

4

d u 
 
 

8+ − faces. 

 

      

 

 
  

  
Figure 7: 
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Corollary 2.16   If u  is a 
( )d uT − vertex ( ( ) 7,d u  ( ) 4 3,d u n= + 1, 2,...n = ) in which there are 

incident with at most 
( )

2

d u 
 
 

  3-faces and at most 
( )

4

d u 
 
 

 4-faces, then there are at most two 5+ − faces and 

( ) 3
( )

4 4

d u
−  8+ − faces. 

Corollary 2.17   If u  is a 
( )d uT − vertex ( ( ) 9,d u  ( ) 4 5,d u n= + 1, 2,...n = ) in which there are 

incident with at most 
( )

2

d u 
 
 

  3-faces and at most 
( )

4

d u 
 
 

 4-faces, then there are at most two 5+ − faces and 

( )
( )

4 4

5d u
−  8+ − faces. 

3. DISCHARGING PROCESS 

We now apply a discharging procedure to reach a contradiction. We first define the initial charge function 

ch  on the vertices and faces of G  by letting ( ) ( ) 2ch v ad v b= −  if ( )v V G  and ( ) ( ) ( ) 2 ,ch f b a d f b= − −

( )f F G . We note 
3

2
a =  and 

7

2
b =   so that we get the initial function 

3
( ) ( ) 7

2
ch v d v= −  if ( )v V G  and 

( ) 2 ( ) 7,ch f d f= −  ( ).f F G  It follows from Euler's formula | ( ) | | ( ) | | ( ) | 2V G E G F G− + =  and the 

relation 

( ) ( )

( ) ( ) 2 | ( ) |
v V G f F G

d v d f E G
 

= =   

so that the total sum of initial function of the vertices and faces is equal to 

( ) ( ) ( ) ( )

3
( ) ( ) ( ( ) 7) (2 ( ) 7)

2

3
                                        (2 | ( ) |) 7 | ( ) | 2(2 | ( ) |) 7 | ( ) |

2

                                        7(| ( ) | | ( ) | | (

v V G f F G v V G f F G

ch v ch f d v d f

E G V G E G F G

V G F G E

   

+ = − + −

= − + −

= − + −

   

) |) 14G = −

 

Since any discharging procedure preserves the total charge of ,G  if we can define suitable discharging 

rules to change the initial charge function ch  to the final charge function ch  on V FU  such that ( ) 0ch x   for 

all ,x V F U  then  

0 ( ) ( ) 14,
x V F x V F

ch x ch x
 

 = = − 
U U

 

 a contradiction completing the proof of Theorem 1.1 when G  is 2-connected. 

 

Proof of Theorem 1.1 

Since G is 2-connected, G  has no adjacent 3-faces or 7-cycles and ( ) 3,G   the following Lemma is 

obvious. 

Lemma 3.1  

(i) In ,G  there is no adjacent 3-faces. 

(ii)  In ,G  there is a 4-face adjacent to at most two 3-faces. Moreover, when a 4-face is adjacent to at least one           

3-face, the 4-face can be adjacent to no 4-face except v  is a 3-poor vertex. 

(iii)  In ,G  there is a 4-face adjacent to at least one 4-face. 

(iv)  In ,G  there is a 5-face adjacent to at most one 3-face and no adjacent to any 4-face. 
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 (v)   In ,G  there is no 6-face adjacent to a 3-face. 

We will introduce the discharging rules: 

 R 1.  Charge from a 4+ − face f  

 R 1.1.   If  ( ) 4,d f =  then f  sends 
1

4
 to each incident vertex. 

R 1.2.  If ( ) 5,d f =  then f  sends 
3

5
 to each incident vertex. 

R 1.3.  If  ( ) 6,d f =  then f  sends 
5

6
 to each incident vertex. 

R 1.4.   If  ( ) 8,d f   then f  sends 
9

8
 to each incident vertex. 

R 2.  Charge to a 3-face 1 2 3[ ]f v v v=  where 1 2 3( ) ( ) ( ).d v d v d v   

R 2.1.    Suppose to v  is a 4-light vertex. 

 Let 1 2[ ] (5 ,3,4)f v v v += = − face. Then v  gets 
9

8
 from each 8+ − face and 

1

4
 from 4-face and it 

sends 
3

2
 to .f  Then 2v   gets 

10

8
 from  8+ − face and 

5

4
 from f . After that 1v  gets 

9

8
 from 8+ − face and sends 

13

16
 to .f  

  R 3. Suppose to v  is a poor vertex in which 1 2 3[ ]f v v v=  with 1 2 3( ) ( ) ( ).d v d v d v   

  R 3.1.   Let 1( ) 3d v =  and 1v  be a 3-poor vertex. Then 1v  gets 
1

2
 from each 4-face and f  sends 

3

2
 to 1.v  

 R 3.2.  Let 2( ) 4d v =  and 2v  be a 4-poor vertex. 2v  gets 
3

5
 from 5-face and 

5

6
 from 6-face and f  gets 

1

3
 from 

2.v  

R 3.3.  Let 3( ) 5d v = and 3v  be a 5-poor vertex. 3v gets 
3

5
 from 5-face, 

5

6
 from 6+ −  face and 

5

6
from 5+ − face 

and then  f  gets 
8

3
 from 3.v  

 R 4. Suppose to v   be a 3-semi-poor vertex in which 1 1 2[ ],f vv xv=  2 2 3[ ]f vv yv= and 3 3 1[ ]f vv zv= with 

( ) ( )id v d v  where {1, 2,3}.i  

 R 4.1.  Let ( ) 3d v =  and v  be a 3-semi-poor vertex. Then v  gets 
5

6
 from each 4-face. 

R 4.2.  Let ( ) ( ) ( ) 3d x d y d z= = =  and they be 3-semi-poor vertices. So,  iv  a 5+ − vertex where {1,2,3}i . 

Then  v  gets 
1

2
 from each 4-face   and  

1

3
 from each 5+ − vertex and 4-face sends 

1

6
 to other vertices not 3-semi-

poor vertices. Moreover, ,x  y  and z  are like as .v  

R 5.  Suppose to 1v   be a 3-full-poor vertex in which 1 2 3[ ]f v v v=   with 1 2 3( ) ( ) ( ).d v d v d v   
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   Then 1v   gets 
3

5
 from  5-face and 

18

8
  from  8+ − face and 1v  sends 

7

20
 to .f   Moreover, 8+ − face sends 

27

28
 

to other vertices. 

R 6.  Suppose to v  be a 4-semi-poor vertex in which 1 1 2[ ],f vv v=   3 3 4[ ]f vv xv= and 2f  and 4f  are 8+ −

faces with  1 4( ) ( ) 3.d v d v= =  

R 6.1  Let v be a 4-semi-poor I vertex. Then v  gets 
1

3
  from 3f   and  

9

8
 from 8+ − face and it sends 

3

2
 to 1.f  

R 6.1.1  For 1 4( ) ( ) 3,d v d v= =  1v   gets 
9

8
 from 1,f  

1

4
 from 4-face and 

9

8
 from 8+ − face and then 4v  gets 

2

3
 from 3f  and  

9

8
 from 8+ − face. 

R 6.2  Let v  be a 4-semi-poor II vertex. Then v  gets 
1

4
  from 3f  and  

9

8
  from 8+ − face and it sends 

3

2
 to 1.f  

R 6.2.1  For 1( ) 3,d v =  1v  gets 
9

8
 from 1,f  

1

4
 from 4-face and 

9

8
 from 8+ − face. 

R 6.2.2  For 4( ) 3,d v =  if the outer neighbor of 4v  is 4-semi-poor vertex, then 4v  gets 
3

4
  from 3f , 

2

3
 from  4-

face and 
9

8
 from 8+ − face. If the outer neighbor of  4v  is not 4-semi-poor vertex, then 4v  gets 

3

4
 from 3f  and 

1

4
 

from 4-face and 
9

8
  from 8+ − face. 

R 6.3  Let v  be a 4-semi-poor III vertex. Then v  gets 
1

3
  from 3f  and  

9

8
  from 8+ − face and it sends 

3

2
 to 

1.f  

R 6.3.1  For 1 4( ) ( ) 3,d v d v= =  1v  gets 
7

8
 from 1,f  

3

5
  from 5-face and 

9

8
 from 8+ − face and then 4v  gets 

2

3
 from 3f  and 

9

8
 from 8+ − face. 

R 6.4  Let v  be a 4-semi-poor IV vertex. Then v gets 
1

4
 from 3f  and  

9

8
 from 8+ − face and it sends 

3

2
 to 1.f  

R 6.4.1  For 1( ) 3,d v =  1v  gets 
7

8
 from 1,f  

3

5
  from 5-face and 

9

8
 from 8+ −  face. 

R 6.4.2  For 4( ) 3,d v =  if the outer neighbor of 4v  is 4-semi-poor vertex, then 4v
 
gets 

3

4
 from 3,f

2

3
 from  4-

face and 
9

8
 from 8+ − face. If the outer neighbor of 4v  is not 4-semi-poor vertex, then 4v  gets 

2

3
 from 3f  and 

1

4
 

from 4-face and 
9

8
 from 8+ − face. 

R 7. Suppose to v  be a 4-full-poor vertex in which 1 1 2[ ],f vv xv= 3 3 4[ ]f vv yv=   and 2f  and 4f are 8+ −

faces with 1 4( ) ( ) 3.d v d v= =  
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R 7.1  Let v  be a 4-full-poor I vertex. Then v  gets   
9

8
 from each 8+ − face and it sends 

2

5
 to 1v and 4.v  

R 7.1.1 For 1 4( ) ( ) 3,d v d v= = both 1v  and 4v  get 
1

2
 from 4-face and 

9

8
 from 8+ − face and then they get 

2

5
 

from .v  Moreover, 1f  and 2f  send 
1

2
 to 3-vertex and 

1

8
 to 4+ − vertex. 

R 7.2 Let v  be a 4-full-poor II vertex and 1v  is incident with 3-face and 4v  is incident with 4-face. Then v  gets   

9

8
 from each 8+ −  face and it sends 

2

5
 to 1v and 

1

5
 to 4.v  

R 7.2.1 For 1( ) 3,d v =  1v   gets 
1

2
 from 4-face and 

9

8
 from 8+ − face and then it gets 

2

5
 from .v  

R 7.2.2  For 4( ) 3,d v =  if the outer neighbor of 4v  is 4-semi-poor vertex, then 4v  gets 
1

2
 from 3f  

2

3
 from  4-

face and 
9

8
 from 8+ −  face and then gets 

1

5
 from .v  If the outer neighbor of 4v  is not 4-semi-poor vertex, then 4v

gets 
1

2
 from 3f  and 

1

4
 from 4-face and 

9

8
 from 8+ − face and then 

1

5
 from .v  

R 7.3 Let v  be a 4-full-poor III vertex. Then v  gets   
9

8
 from each 8+ − face and it sends 

2

5
 to both 1v and  4.v  

R 7.3.1 For 1 4( ) ( ) 3,d v d v= =  if the outer neighbors of 1v  and 4v  is 4-semi-poor vertices, then both of 1v  and 4v  

get 1 from each 4-face and 
9

8
 from 8+ − face and then get 

2

5
 from .v If the outer neighbors of 1v and 4v  are not 4-

semi-poor vertices, then  1v and 4v   get 1 from 1f  and 3f  and 
1

4
  from 4-face and 

9

8
 from 8+ −  face and then  

2

5
 

from .v  

R 8. Suppose to v is 
( )d vT − vertex. 

  We deduce induction for ( ) 3.d v   

R 8.1 
3T − vertex. 

Let 1 2[ ]f vv v=  and v  be 3-vertex  incident with 4-face and 8+ − face. If  v is a 
3T  vertex, then v  gets 

9

8
 from 8+ − face and 

1

4
 from 4-face. Then f  sends 

9

8
 to .v  

R 8.2  
4T − vertex. 

If v is 
4T − vertex incident with one 4-face and one 8+ − face, then v  gets 

10

8
 from 8+ − face and 

1

4
 

from 4-face and then v  sends 
2

8
 to each 3-face. 

R 8.3.  
5T − vertex 

Let 1 1 2[ ]f vv v= and 3 3 4[ ].f vv v= v  gets 
3

5
 from each 5+ − face and 

1

4
 from 4-face. Then v  sends 

7

8
 to each 3-face. 
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R 8.4. 
( )d vT − vertex 

R 8.4.1  Let v be a 
( )d vT − vertex such that n  is even and 6.n   v  gets 

3

8
from each 8+ − face and 

1

4
 from 4-

face. In general , v sends 
53 ( ) 224

16 ( )

d v

d v

−
 to each 3-face. 

R 8.4.2  Let v  be a 
( )d vT − vertex such that ( )d v  is odd and ( ) 7.d v   Here v is incident with 

( ) 3
( )

4 4

d v
−  

8+ − face where ( ) 4 3,d v r= + 1,2, ,r n=   and ( ) 7d v   and incident with 
( )

2

d v 
 
 

 3-face and two 5+ −

face. 

Then v gets 
3

8
 from each 8+ − face, 

1

4
 from 4-face and 

3

5
 from each 5+ − face. 

In general for ( ) 4 3,d v n= +  1, 2,...,n =  and ( ) 7,d v  v sends 
52 ( ) 194

16 ( )

d v

d v

−
  to each 3-face. 

R 8.4.3  Let v  be a 
( )d vT − vertex such that ( )d v  is odd and ( ) 9.d v   Here v  is incident with 

( ) 5
( )

4 4

d v
−  

8+ − face where ( ) 4 5,d v n= +  1, 2,n =   and ( ) 9d v   and incident with 
( )

2

d v 
 
 

 3-face and two 5+ − face. 

         Then v  gets 
3

8
from each 8+ − face, 

1

4
 from each 4-face and 

3

5
 from each 5+ −  face. 

In general for ( ) 4 5,d v n= +  1, 2,...,n =  and ( ) 9,d v   v  sends 
52 ( ) 202

( )
16 ( )

d v

d v

−
  to 3-face. 

R 9. For ( ) 4,d v   if v is incident with 3-face, 4-face, 6+ −  face and 8+ − face, then v  gets 
1

4
 from 4-face, 

5

6
 

from 6+ − face and 
9

8
 from 8+ − face and sends 1 to 3-face. 

R 10.  Otherwise, if v  is not a poor vertex in which 1 2 3[ , , ] (3,4,5)f v v v= = − face, then  f  gets 1 from 4-vertex 

and 
3

2
 from 5-vertex and then it sends  

9

8
 to 1.v  

It remains to show that the resulting final charge ch  is satisfied with 0ch   for all .x V F U   Let ( )v V G  

and ( ).f F G  The proof can be completed with ( )d x  for all .x V F U  Let ( )v V G  and ( ).f F G  Since 

( ) 3.d v   If ( ) 4,d v =  by R 1 and R 2, then v  is a 4-light vertex with (3,4,5 )f += − face. So, 

9 1 3 3 9 1 3
( ) ( ) 2 4 7 2 0

8 4 2 2 8 4 2
ch v ch v = +  + − =  − +  + − = by R 2.1. Continuously, if ( ) 3d v =  by R 2.1 

and R 5, then (3,4,5 )f += − face and the 3-vertex is 3-full-poor vertex. So, 
10 5

( ) ( ) 0
8 4

ch v ch v = + + = by R 

2.1 and 
10 5 3

( ) ( ) 0
8 4 5

ch v ch v = + + +   R 5. 

   If 1 2 3[ ] (3,4,5)f v v v= = by R 1 and R 3 and  by Lemma 2.8, then 1v , 2v  and 3v  are 3-poor, 4-

poor and 5-poor vertices. So, for 
1 3

( ) ( ) 2 0
2 2

ch v ch v = +  + =  by R 3.1. And then for ( ) 4,d v =  
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3 5 1 3 5 1
( ) ( ) 1 0

5 6 3 5 6 3
ch v ch v = + + − = − + + −  R 3.2. Moreover, for ( ) 5,d v =  

3 5 8 1 3 5 8
( ) ( ) 2 2 0

5 6 3 2 5 6 3
ch v ch v = + +  − = + +  −  R 3.3. If ( ) 3d v =  and 1 1 2[ ],f vv xv= 2 2 3[ ]f vv yv=

and 3 3 1[ ],f vv zv=  then v  is a 3-semi-poor vertex by R 1 and R 4. So, we have 

5 3 5
( ) ( ) 3 3 7 3 0

6 2 6
ch v ch v = +  =  − +  = by R 4.1. By Corollary 2.12 if ( ) ( ) ( ) 3d x d y d z= = = and they 

are 3-semi-poor vertices, then ( ) 5.id v   So, 
1 1 5 5

( ) ( ) 3 3 0
2 3 2 2

ch v ch v = +  +  = − + = by R 4.2. If 

( ) 3d v =  and 1 2[ ] (3,4,4 )f vv v += =  and 1 2 3( ) { , , }N v v v v=  by R 1 and R 5 and  by Lemma 2.13, then v  is a 

3-full-poor vertex. So, 
3 18 7 5 5

( ) ( ) 0
5 8 20 2 2

ch v ch v = + + − = − + =  by R 5. Then, if 1v  is a 4-poor vertex, then 

2v  is incident with 4-face, 6+ − face and 8+ − face. So, for ( ) 4,d v 
1 5 27

( ) ( ) 1 0
4 6 28

ch v ch v = + + + −   by R 

9 and R 5. Here, for 3-face, 
1 7

( ) ( ) 1 0
3 20

ch f ch f = + + +   R 3.2 and R 5 and R 9. 

   For ( ) 4,d v =  if  1 1 2[ ],f vv v=  3 3 4[ ]f vv xv= and 2f and 4f are 8+ − faces with 

1 4( ) ( ) 3,d v d v= = then v  is  a 4-semi-poor  vertex by R 1 and R 6. If v  is a 4-semi-poor vertex I, then 

1 9 3 1 9 3
( ) ( ) 2 1 0

3 8 2 3 4 2
ch v ch v = + +  − = − + + −    by R 6.1. For 1( ) 3,d v =  we must have 2( ) 4.d v   So, 

1 1

9 1 9
( ) ( ) 0

8 4 8
ch v ch v = + + + = by R 6.1.1 and R 9. Then 1 2[ ]f vv v= , 

3 9
( ) ( ) 1 0

2 8
ch f ch f = + + −  by R 

6.1, R 6.1.1 and R 9. For 4( ) 3,d v =  if 4v  is incident with (3,4,5)f = − face, then 

4 4

2 9 9
( ) ( ) 0

3 8 8
ch v ch v = + + +   by R 6.1.1 and R 10. If v  is a 4-semi-poor  vertex II, then   

1 9 3 1 9 3
( ) ( ) 2 1 0

4 8 2 3 4 2
ch v ch v = + +  − = − + + − =  by R 6.2. For 4( ) 3,d v =  if the outer neighbor of 4v  is 4-

semi-poor vertex, then 4 4

2 3 9
( ) ( ) 0

3 4 8
ch v ch v = + + +   by R 6.2.2. For 4( ) 3,d v =  if the outer neighbor of 4v  

is 4-full-poor vertex, then 4 4

1 3 2 9
( ) ( ) 0

4 4 5 8
ch v ch v = + + + +    by R 6.2.2 and R 7.1. 

If v  is a 4-semi-poor  vertex III, then 
1 9 3 1 9 3

( ) ( ) 2 1 0
3 8 2 3 4 2

ch v ch v = + +  − = − + + −  by R 6.3. 

For 1( ) 3,d v = we must have 2( ) 4.d v   So, 1 1

7 3 9
( ) ( ) 0

8 5 8
ch v ch v = + + +   by R 6.3.1 and R 9. Then

1 2[ ]f vv v= , 
3 7

( ) ( ) 1 0
2 8

ch f ch f = + + −  by R 6.3, R 6.3.1 and R 10. For 4( ) 3,d v =  if 4v  is incident with 

(3,4,5)f = − face, then 4 4

2 9 9
( ) ( ) 0

3 8 8
ch v ch v = + + +   by R 6.3.1 and R 10. 
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If v  is a 4-semi-poor  vertex IV, then   
1 9 3 1 9 3

( ) ( ) 2 1 0
4 8 2 3 4 2

ch v ch v = + +  − = − + + − =  by R 

6.4. For 4( ) 3,d v =  if the outer neighbor of 4v  is 4-semi-poor vertex, then 4 4

2 3 9
( ) ( ) 0

3 4 8
ch v ch v = + + +   by 

R 6.4.2. For 4( ) 3,d v =  if the outer neighbor of 4v  is 4-full-poor vertex, then 

4 4

1 3 2 9
( ) ( ) 0

4 4 5 8
ch v ch v = + + + +    by R 6.4.2 and R 7.1.  

For ( ) 4,d v =  if  1 1 2[ ],f vv xv=  3 3 4[ ]f vv yv=  and 2f  and 4f   are 8+ − faces with 

1 4( ) ( ) 3,d v d v= = then v  is  a 4-full-poor  vertex by R 1 and R 7. If v  is a 4-full-poor  vertex I, then 

1 9 2 9 4
( ) ( ) 2 2 1 0

8 8 5 4 5
ch v ch v = + +  −  = − + −   by R 7.1. For 1 4( ) ( ) 3,d v d v= = if 1v and 4v  are 

incident with (3, 4,5)f = , then  
1 2 9 9

( ) ( ) 0
2 5 8 8

ch v ch v = + + + +   by R 7.1.1 and R 11 (where v  is 

represented by 1v  and 4).v   If v  is a 4-full-poor  vertex II, then   

1 9 2 1 1 9 3
( ) ( ) 2 1 0

8 8 5 5 8 4 5
ch v ch v = + +  − − = − + + −    by R 7.2. For 4( ) 3,d v =  if the outer neighbor of 4v  

is 4-semi-poor vertex, then 4 4

1 1 9 2
( ) ( ) 0

2 5 8 3
ch v ch v = + + + + =   by R 7.2.2 and R 6.1. For 4( ) 3,d v =  if the 

outer neighbor of 4v  is 4-full-poor vertex, then 4 4

1 1 1 2 9
( ) ( ) 0

4 2 5 5 8
ch v ch v = + + + + + =  by R 7.2.2 and R 7.1.  

For ( ) 3,d v =  by R 1 and R 8, if v  is incident with 3-face, 4-face and 8+ − face, then v  is a 
3T −

vertex. Let 1 2[ ] (3,4,4 )f vv v += = − face. Here, v  is 
3T − vertex and we can get 1v  is a 4-semi-poor vertex and 

2 4v   and so 
1 9 9

( ) ( ) 0
4 8 8

ch v ch v = + + + =  by R 8.1, R 6 and R 9. Then 
3 9

( ) ( ) 1 0
2 8

ch f ch f = + + −   

by R 8.1, R 6 and R 9. 

    For ( ) 4,d v =  by R 1 and R 8,  if v  is incident with two 3-faces, one 4-face and one 8+ − face, 

then v  is a 
4T −  vertex. Let 1 1 2[ ]f vv v=  and 3 3 4[ ]f vv v= , 2f  be 4-face and 4f  is 8+ − face. So, 

1 10 2
( ) ( ) 2 0

4 8 8
ch v ch v = + + −  =  by R 8.2. Let 1 3 (3,4,5).f f= =  If v  is a 

4T − vertex, then 

2 3 9
( ) ( ) 0

8 2 8
ch f ch f = + + −   by R 8.2, R 10 or  

2 3 3
( ) ( ) 0

8 2 2
ch f ch f = + + −   by R 8.2, R 3.1. So, it is 

impossible that 
4T − vertex is adjacent to 3-vertex.  

Lemma 3.2 Let 1 1 2[ ]f vv v=  and 3 3 4[ ]f vv v= ,  2f  be 4-face and 4f  is 8+ − face. If v  is a 
4T − vertex, 

then the neighbor vertices of v  are 4+ − vertex. 

For ( ) 5,d v =  by R 1 and R 8, if v  is incident with two 3-faces, one 4-face and two 5+ − face, then v  is 

a 
5T − vertex. Let 1 1 2[f vv v= ] and 3 3 4[ ]f vv v= , 2f  be 4-face and 4f  and 5f  are 5+ − faces. So, 

1 3 7
( ) ( ) 2 2 0

4 5 8
ch v ch v = + +  −  =  by R 8.3. For 1f  and 2 ,f  if v  is a 

5T − vertex, then 

7 3
( ) ( ) 1 0

8 2
ch f ch f = + + −   by R 8.3, R 9 and R 3.1 or  

7 3 3
( ) ( ) 0

8 2 2
ch f ch f = + + −   by R 8.2, R 3.1 
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and R 10. So, it is impossible that 
5T − vertex is adjacent to 3-poor vertex. Then 

7 3 9
( ) ( ) 0

8 2 8
ch f ch f = + + −    

by R 8.2, R 10 and 
7 9

( ) ( ) 1 0
8 8

ch f ch f = + + −   by R 8.2, R 9. Therefore, if v  is 
5T − vertex adjacent to 

3T − vertex, then (5,3,5 )f += − face.  

Lemma 3.3  In ,G  let v  be  a 
5T − vertex in which 1 1 2 ][f vv v=  and 3 3 4[ ]f vv v= , 2f  be 4-face and 5f  be 

5+ − faces. If a 
5T − vertex is adjacent to 

3T − vertex, then 1 2 (5,3,5 )f f += = − face. 

Moreover, if v  is a 
( )d vT − vertex, where ( ) 6d v   and ( )d v  is even, by Lemma 2.15, then v  is incident at most 

( )

2

d v 
 
 

 3-faces, at most 
( )

4

d v 
 
 

 4-faces and at most 
( )

8
4

d v + 
− 

 
faces. So, by R 1 and R 8, 

3 ( ) 1 ( ) 53 ( ) 224 ( )
( ) ( ) ( ) ( )    

8 4 4 4 16 ( ) 2

3 3 ( ) 2 ( ) 53 ( ) 224 ( )
         ( ) 7

2 32 32 16 ( ) 2

53 ( ) 224 53 ( ) 224 ( )
         

32 16 ( ) 2

d v d v d v d v
ch v ch v

d v

d v d v d v d v
d v

d v

d v d v d v

d v

−     
  + + −     

     

−     
= − + + −     

     

− −  
= −  

 
0

 

by R 8.4.1.   

If v  is a 
( )d vT − vertex ( ( ) 7,d v  ( ) 4 3d v n= + , where 1, 2,...n = ) by R 8.4.2 and by Corollary 

2.16, then 

3 ( ) 3 1 ( ) 3 52 ( ) 194 ( )
( ) ( ) ( ) ( ) 2 ( )

8 4 4 4 4 5 16 ( ) 2

3 3 ( ) ( ) 6 9 52 ( ) 194 ( )
        ( ) 7

2 32 16 5 32 16 ( ) 2

51 ( ) ( ) 973 52 ( ) 194
        

32 16 160 16

d v d v d v d v
ch v ch v

d v

d v d v d v d v
d v

d v

d v d v d v

d

−   
  + − + +  −   

   

−   
= − + + + − −   

   

− 
= + − − 

 

( )

( ) 2

265 ( ) 973 52 ( ) 194
        

160 32

265 ( ) 973 260 ( ) 970
        

160 160

        0

d v

v

d v d v

d v d v

 
 
 

− −
 −

− −
= −



 

If v  is a 
( )d vT − vertex ( ( ) 9,d v  ( ) 4 5d v n= + , where 1, 2,...n = ) by R 8.4.3 and by Corollary 

2.17, then 
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3 ( ) 5 1 ( ) 3 52 ( ) 202 ( )
( ) ( ) ( ) ( ) 2 ( )

8 4 4 4 4 5 16 ( ) 2

3 3 ( ) ( ) 6 15 52 ( ) 202 ( )
        ( ) 7

2 32 16 5 32 16 ( ) 2

51 ( ) ( ) 1018 52 ( ) 202
        

32 16 160 1

d v d v d v d v
ch v ch v

d v

d v d v d v d v
d v

d v

d v d v d v

−   
  + − + +  −   

   

−   
= − + + + − −   

   

− 
= + − − 

 

( )

6 ( ) 2

265 ( ) 1018 52 ( ) 202
        

160 32

265 ( ) 1018 260 ( ) 1010
        0

160 160

d v

d v

d v d v

d v d v

 
 
 

− −
 −

− −
= − 

 

If v  is a 4-light vertex, then 1 2[ ] (3,3,4)f v v v= = − face by R1 and R2.1 and R 5. If 1v   and 2v are 3-

full-poor vertices, then 
3 7 22

( ) ( ) 1 2 ( ) 7 0.
4 20 20

ch f ch f d f = + + + = − +   By Lemma 2.9, when ( ) 4,d f =

f  sends 
1

4
  to each 4-light vertex. 

1
( ) ( ) 4 0

4
ch f ch f = −  =  by R 2.1 and R 1. Suppose ( ) 3d f =  with 

1 2 3[ ] (3,4,5)f v v v= = − face. By Lemma 2.8 and  R 3, if 1,v  2v  and 3v are poor vertices, then 

1 8 3 3
( ) ( ) 2 ( ) 7 0

3 3 2 2
ch f ch f d f = + + − = − +   by R 3.1, R 3.2 and R 3.3. By R 10, if 1,v  2v  and 3v  are not 

poor vertices, then 
3 9 11

( ) ( ) 1 2 ( ) 7 0.
2 8 8

ch f ch f d f = + + − = − +   For ( ) 4d f = , by Lemma 2.11, 

5 1 7
( ) ( ) 2 ( ) 7 0

6 3 6
ch f ch f d f = − − = − −   by R 3.2, R 4.1 and R 6.1. So, Lemma 2.11 is true.  

We have that G  is simple, has neither adjacent triangles nor 7-cycles and ( ) 3,G   the following lemma is 

obvious. This completes the proof of Theorem 1.1. 
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