[bookmark: _Hlk180401691][bookmark: _Hlk180352731]SELF – DESTRUCTION SYSTEM IN CLOUD SERVER FOR DATA PRIVACY
MAJOR PROJECT
Submitted by
BHARANI A K (RCAS2023MCS112)
in partial fulfilment `for the award of the degree of
MASTER OF SCIENCE
SPECIALIZATION
IN
INFORMATION SECURITY AND CYBER FORENSICS

[image: A logo with colorful circles

Description automatically generated]

DEPARTMENT OF COMPUTER SCIENCE
RATHINAM COLLEGE OF ARTS AND SCIENCE
(AUTONOMOUS)
COIMBATORE - 641021 (INDIA)
MAY-2025
[bookmark: _Hlk180401720]
RATHINAM COLLEGE OF ARTS AND SCIENCE
(AUTONOMOUS)
COIMBATORE - 641021

[image: A logo with colorful circles

Description automatically generated]

BONAFIDE CERTIFICATE

This is to certify that the Major Project entitled “SELF – DESTRUCTION SYSTEM IN CLOUD SERVER FOR DATA PRIVACY” submitted by Bharani A K , for the award of the Master in Science specialization in “Information Security and Cyber Forensics” is a bonafide record of the work carried out by her under my guidance and supervision at Rathinam College of Arts and Science, Coimbatore.

Ms.Sharika K MSc. Computer Science	 Dr. Vimalkumar. D, M.Tech,M.Phil,Ph.D
Supervisor						HOD

Submitted for the University Examination held on

INTERNAL EXAMINER	EXTERNAL EXAMINER

 1

[bookmark: _Hlk180401757] RATHINAM COLLEGE OF ARTS AND SCIENCE
(AUTONOMOUS)
COIMBATORE - 641021
DECLARATION
I, Bharani A K, hereby declare that this major project Report entitled “SELF – DESTRUCTION SYSTEM IN CLOUD SERVER FOR DATA PRIVACY
”, is the record of the original work done by me under the guidance of
Ms.Sharika K Faculty Rathinam college of arts and science, Coimbatore. To the best of my knowledge this work has not formed the basis for the award of any degree or a similar award to any candidate in any University.

Place: Coimbatore	Signature of the Student:
Date: 	Bharani A K

COUNTERSIGNED
[bookmark: _GoBack] Ms.Sharika K MSc.Computer Science
Supervisor

Acknowledgement

On successful completion for project look back to thank who made in possible. First and foremost, thank “THE ALMIGHTY” for this blessing on me without which I could have not successfully my project. I am extremely grateful to Dr. Madan A Sendhil, M.S., Ph.D., Chairman, Rathinam Group of Institutions, Coimbatore and Dr. R. Manickam MCA., M.Phil., Ph.D., Secretary, Rathinam Group of Institutions, Coimbatore for giving me opportunity to study in this college. I am extremely grate full to
Dr. S. Balasubramanian, M.Sc., Ph.D. (Swiss)., PDF(Swiss/USA) Principal Rathinam College of Arts and Science (Autonomous), Coimbatore. Extend deep sense of valuation to
Mr. K. Arun Kumar, M.E., (Ph.D), - Associate Dean/Academics, Rathinam College of Arts and Science (Autonomous) who has permitted to undergo the project.

Unequally I thank Dr. D. Vimal Kumar, M.C.A., M.Phil., Ph.D. Associate Professor and Head of the Department, A.S. Krishna, M.E., (Ph.D). Program Coordinator, and all the faculty members of the Department – Computer Science for their constructive suggestions, advice during the course of study. I convey special thanks, to the supervisor Ms.Sharika K
MSc. Computer Science who offered their inestimable support, guidance, valuable suggestion, motivations, helps given for the completion of the project.
I dedicated sincere respect to my parents for their moral motivation in completing the project

Contents
Acknowledgement
List of Abbreviation
Abstract
1. Introduction 1
 1.1 Objective of the project 2
 1.2 Scope of the project 2
 1.3 Existing system 3
2. Literature Survey 4
 2.1 Self-Destructing Data in Decentralized Networks 4
 2.2 Cloud Storage Privacy and Security 4
 2.3 A Study on Cloud Data Storage Security and Cryptography 4
3. Methodology 5
 3.1 System Design 5
 3.2 Data Monitoring and Detection 5
 3.3 Self-Destruction Trigger Mechanism 6
 3.4 Secure Data Erasure Techniques 6
 3.5 User Interface for Configuration 7
 3.6 System Testing and Validation 7
 3.7 Compliance and Security Validation 8
 4. Experimental Setup 9
 4.1 Introduction 9
 4.2 Hardware Requirements 9
 4.3 Software Requirements 9
 4.4 System Configuration 10
 4.5 Experimental Workflow 11
 4.6 Testing Methodology 12

 5. Result & Discussions 13
 5.1 Result 13
 5.2 Discussions 15
 5.3 Limitations 16
 APPENDIX 17
 A. Data & Flow diagram 17
 B. Table Structure 19
 C. Sample coding 21
 D. Sample outputs 25
6. Conclusion 28
 6.1 Future work 28

Reference 29

List of Abbreviation

AES Advanced Encryption Standard
CSPs Cloud Service Providers
DLP Data Lose Prevention

Abstract

Personal data stored in the Cloud may contain account numbers, passwords, notes, and other important information that could be used and misused by a miscreant, a competitor, or a court of law. These data are cached, copied, and archived by Cloud Service Providers (CSPs), often without users’ authorization and control. Self-destructing data mainly aims at protecting the user data’s privacy.
The "Self-Destructing Data System for User Data Privacy in Cloud" project introduces an innovative approach to safeguarding user data privacy within cloud environments. Traditional cloud storage systems raise concerns about data retention and unauthorized access. In response, our project proposes a dynamic and secure data management system that automatically and irreversibly deletes user data after a predefined retention period. By integrating cryptographic techniques, secure algorithms, and cloud infrastructure, this system provides a robust solution for users seeking heightened control over their personal information in the cloud.
This self-destruction feature is designed to be user-controlled, ensuring that individuals or organizations retain autonomy over their data. Users can trigger the self-destruction process through secure authentication methods, enabling them to respond promptly to security threats or concerns. The system employs advanced encryption techniques to protect data during normal operations, and the self-destruction mechanism acts as a fail-safe option in extreme scenarios
The project aims to mitigate the impact of potential data breaches, unauthorized access, or other security incidents by offering users an effective and decisive response to protect their sensitive information. By integrating this self-destruction system into the cloud server architecture, the project seeks to enhance user confidence in cloud-based services, ultimately contributing to a more secure and privacy-aware computing environment.

 5

The "Self-Destruction System in a Cloud Server for Data Privacy" combines the strength of AES cryptography, specifically the Rijndael algorithm, with a self-destruct mechanism to fortify the security of sensitive data stored in the cloud. This innovative approach aims to mitigate the risks associated with unauthorized access, providing a robust solution for safeguarding data privacy in cloud computing environments.

 Chapter 1
Introduction

In the era of digital ubiquity, cloud storage has become the lifeblood of our internet-driven world. While convenient and scalable, entrusting sensitive data to external servers raises critical concerns about privacy and security. Traditional deletion methods often leave recoverable traces, rendering data vulnerable to unauthorized access even after intentional removal. This abstract presents a novel solution: a self-destruction system embedded within a cloud server, specifically designed to safeguard data privacy.
The "Self-Destruction System in a Cloud Server for Data Privacy" project represents a pioneering initiative at the forefront of addressing the escalating concerns surrounding the confidentiality of data in cloud computing environments. In an era marked by the exponential growth of digital information and the increasing prevalence of cyber threats, the imperative to fortify data privacy measures has never been more critical. This project introduces a cutting-edge solution in the form of a self-destruction mechanism embedded within cloud server infrastructures. The central aim is to furnish an additional layer of security by empowering users to remotely trigger the destruction of their stored data in response to unauthorized access or potential security breaches.
At its core, this self-destruction feature offers users unprecedented control, ensuring that individuals and organizations retain autonomy over their sensitive data. Activation of the self-destruction mechanism is contingent upon secure authentication protocols, allowing users to promptly respond to security threats or apprehensions. Employing advanced encryption techniques during routine operations, the self-destruction system serves as a fail-safe option, augmenting the overall resilience of data protection measures.
This project seeks to assuage the impact of potential data breaches and unauthorized access by providing users with a robust and decisive tool to safeguard their confidential information. By seamlessly integrating the self-destruction system into the architecture of cloud servers, the project not only bolsters user confidence in cloud-based services but also contributes significantly to cultivating a more secure and privacy-conscious computing environment. Through its innovative approach, this project represents a pivotal stride toward enhancing the integrity and privacy of data stored in cloud infrastructures.
1.1 Objective of the project
· [bookmark: _TOC_250015]The project " Self-Destruction system in a cloud server for Data Privacy " is aimed at enhancing data privacy and security in cloud storage environments. This innovative system is designed to give users greater control over their data by enabling automatic deletion of data after a predetermined period or under specific conditions, thereby significantly reducing the risk of unauthorized access or data breaches
· To implement a robust system that ensures the privacy of user data stored in cloud servers by allowing data to self-destruct after a set timeframe or event, minimizing long-term data exposure.
· Develop an automated mechanism that reliably deletes data and potentially its backups without the need for manual intervention, ensuring a fail-safe data destruction process.
· To ensure that once the data is set to self-destruct, it is irrecoverably deleted, leaving no trace behind, thus maintaining the integrity of user data privacy.
 1.2 Scope of the Project
· Design and implement a self-destruction mechanism that automates secure and permanent data deletion based on predefined triggers and conditions.
· Integrate the system with various cloud storage services (e.g., AWS, Azure, Google Cloud) to ensure compatibility and scalability across different platforms.
· Enable users to configure self-destruction policies, such as time-based deletions, data retention rules, and event-driven triggers.
· Implement monitoring tools to detect abnormal access patterns, unauthorized login attempts, or data breaches that can initiate the self-destruction process.
· Utilize advanced data destruction methods like cryptographic shredding, overwriting, and zero-filling to ensure no data remnants are recoverable after destruction.
· Develop a logging system to track all data destruction events and provide detailed reports for audit and compliance purposes.
· Ensure compliance with data privacy regulations like GDPR, HIPAA, and CCPA to provide a secure solution for handling sensitive information.
· Create an intuitive user interface for defining destruction rules, viewing destruction events, and monitoring the system status in real time.
· Conduct rigorous testing to validate the effectiveness, reliability, and security of the self-destruction mechanism under various scenarios.
· Provide comprehensive documentation for system deployment, configuration, and maintenance, along with technical support for effective integration and management.
1.3 Existing System
In traditional cloud systems, while encryption and access controls were common, there might not have been a dedicated self-destruction process that empowers users to respond promptly to potential security breaches. The user's control over data privacy might have been limited, and the overall system might have relied on standard security measures without a tailored solution for users to proactively manage the security of their stored data. The absence of a self-destruction feature could have left the data vulnerable in case of unauthorized access or security incidents, without a rapid and user-driven response mechanism. The transition to the proposed system aims to address these limitations, introducing an innovative approach to enhance user control and data privacy in cloud environments.
DRAWBACKS OF EXISTING SYSTEM
· Lack of mechanisms for users to actively manage and control the security of their stored data
· Absence of a dedicated self-destruction process, leaving data vulnerable in case of security breaches.
· Insufficient options for users to respond promptly to potential security incidents or unauthorized access.
· Lack of features empowering users to actively participate in ensuring the security and privacy of their stored data.
· The existing system may not provide a robust solution for preventing or responding to unauthorized access effectively 	
 Chapter 2
Literature Survey
2.1 "Self-Destructing Data in Decentralized Networks: Current Techniques and Challenges" by Zhang, L., & Liu, P. (2020)
The paper discusses various methods for implementing self-destructing data in decentralized networks. The authors explore techniques such as time-based deletion policies and the challenges of enforcing secure data destruction. Their analysis supports the design of systems where data is automatically deleted after a period of inactivity, as proposed in the project.
2.2 "Cloud Storage Privacy and Security: A Comprehensive Survey" by Kumar, V., & Gupta, A. (2021)
This paper reviews various privacy and security challenges in cloud storage systems. The authors explore different threats, including unauthorized access and data breaches, and highlight the importance of encryption and access control mechanisms. They discuss potential solutions, such as self-destructing data and time-limited access, which reduce the risk of sensitive data exposure.

2.3 "A Study on Cloud Data Storage Security and Cryptography" by Patil, M., & Joshi, R. (2022)
This study examines cryptographic techniques, including AES encryption, as a key security feature for cloud data storage. The paper compares encryption methods in terms of security and performance, demonstrating the advantages of AES for protecting sensitive information in the cloud. This is relevant for securing files in self-destructing data systems.

 Chapter 3
Methodology
3.1 System Design
· 3.1.1 Architectural Design and Components
This subtopic outlines the overall system architecture, detailing the components such as the monitoring module, self-destruction trigger, secure data erasure, and user interface. It explains how these components interact with each other and with cloud storage services to ensure the effective functioning of the system.
· 3.1.2 Integration with Cloud Platforms
Describes the process of integrating the self-destruction system with cloud storage platforms like AWS, Azure, and Google Cloud. It covers the use of cloud-specific APIs and SDKs to ensure compatibility and seamless operation across different environments.
· 3.1.3 Rule-Based Engine Development for Policy Definition
Focuses on developing a rule-based engine that enables users to define self-destruction policies. It explains how rules can be created based on different conditions (e.g., time-based, activity-based, or event-based), and how the system will interpret and enforce these rules for data destruction.

3.2 Data Monitoring and Detection
· 3.2.1 Implementation of Monitoring Modules
Details the implementation of monitoring modules that continuously track data access patterns, file modifications, and user activities in the cloud environment. It explains how the monitoring system collects and processes data for further analysis.
· 3.2.2 Detection of Abnormal Activities and Breaches
Explains how the system identifies unusual access patterns, unauthorized attempts, or data breaches using predefined rules and anomaly detection techniques. It also discusses potential triggers for initiating data self-destruction.
· 3.2.3 Real-Time Alert System for Trigger Activation
Describes the real-time alert and notification system that informs administrators of potential security incidents. It explains how alerts are generated based on predefined conditions and the subsequent actions that the system takes in response to these alerts.
· 3.2.4 Machine Learning Models for Anomaly Detection
Discusses the use of machine learning models for enhanced anomaly detection, enabling the system to identify complex patterns and deviations in data access behavior that may indicate a security threat or unauthorized activity.
3.3 Self-Destruction Trigger Mechanism
· 3.3.1 Time-Based Trigger Mechanism
Outlines the development of a time-based trigger mechanism that initiates data destruction after a specified time period or when a data retention policy expires. This ensures that sensitive information is automatically deleted after it is no longer needed.
· 3.3.2 Event-Based Trigger Mechanism
Details the creation of event-based triggers that activate data self-destruction in response to specific events such as abnormal access patterns, failed login attempts, or other user-defined events.
· 3.3.3 User-Defined Trigger Mechanism
Allows users to manually define specific triggers for data destruction, such as user-initiated actions or other custom-defined conditions. This subtopic explains the flexibility and configurability of the system for meeting varied user requirements.
· 3.3.4 Scheduling System for Retention Policy Enforcement
Discusses the development of a scheduling system that periodically checks compliance with data retention policies and initiates self-destruction if data exceeds its retention period. This ensures continuous enforcement of data retention policies without manual intervention.
3.4 Secure Data Erasure Techniques
· 3.4.1 Cryptographic Shredding
Explains the use of cryptographic shredding techniques, where encryption keys are destroyed, making the data inaccessible and irrecoverable. This ensures that sensitive data is securely erased without leaving any traceable remnants.
· 3.4.2 Overwriting and Zero-Filling
Describes the use of overwriting and zero-filling techniques to overwrite existing data multiple times with random patterns or zeros, ensuring that no recoverable traces of the data remain.
· 3.4.3 Compliance with Data Erasure Standards
Discusses the compliance of secure data erasure techniques with industry standards and regulations such as NIST SP 800-88, GDPR, and HIPAA, ensuring that the system meets legal and regulatory requirements for data deletion.
3.5 User Interface for Configuration
· 3.5.1 Policy Configuration Interface
Describes the design of a user interface that allows users to easily define self-destruction policies, set parameters for triggers, and configure specific files or datasets for destruction.
· 3.5.2 Real-Time System Monitoring Dashboard
Outlines the development of a real-time monitoring dashboard that displays system status, data access activities, and data destruction events. This provides users with a visual representation of the system’s operations.
· 3.5.3 Log and Audit View for Compliance
Discusses the inclusion of a log and audit view within the user interface, allowing users to review and export logs of data destruction events for compliance and auditing purposes.
3.6 System Testing and Validation
· 3.6.1 Unit Testing for Individual Modules
Describes the process of conducting unit testing for each module, such as the monitoring module, trigger mechanism, and data erasure module, to ensure that they function correctly and independently.
· 3.6.2 Integration Testing for System Components
Focuses on integration testing to validate that all system components work together seamlessly and communicate effectively to perform the self-destruction process.
· 3.6.3 Performance and Stress Testing
Discusses the execution of performance and stress testing to evaluate the system’s scalability, response time, and resource utilization under various load conditions and scenarios.
3.7 Compliance and Security Validation
· 3.7.1 Compliance Testing with Data Privacy Regulations
Details the process of testing the system against data privacy regulations such as GDPR, HIPAA, and CCPA to ensure that it meets the legal requirements for secure data handling and destruction.
· 3.7.2 Security Audits and Vulnerability Assessment
Describes the execution of security audits and vulnerability assessments to identify and mitigate potential security risks, ensuring that the system is resilient against attacks and unauthorized data recovery attempts.
· 3.7.3 Documentation and User Training
Discusses the development of comprehensive documentation for system deployment, configuration, and usage. It also covers user training sessions to ensure proper understanding and utilization of the self-destruction system.

Chapter 4
Experimental Setup
4.1 Introduction
The experimental setup chapter describes the environment, hardware, software, and tools used for developing and testing the “Self-Destructing Data System for User Data Privacy in Cloud.” It also outlines the configuration details, implementation steps, and testing procedures that were followed to ensure the system meets the required functionality and security standards. The setup focuses on creating a secure, efficient, and scalable environment for testing the cloud-based system.
4.2 Hardware Requirements
The system was developed and tested using the following hardware specifications:
· Processor: Intel Core i7, 3.2 GHz or higher
· RAM: 16 GB
· Storage: 512 GB SSD
· Backup Storage: External storage for the backup server with a capacity of 1 TB
· Network: High-speed internet connection for cloud integration and data transfer
The hardware was selected to ensure the smooth running of the Django-based system, encryption processes, and database operations.
4.3 Software Requirements
The system relies on the following software components:
· Operating System: Ubuntu 20.04 LTS (Linux)
Ubuntu was chosen as the operating system for the development and deployment environments due to its compatibility with Python, MySQL, and other essential tools.
· Programming Language: Python 3.9
Python was used for building the backend logic, including the encryption module and integration with the MySQL database.
· Django Framework: Django 4.0
Django was used to manage the web application backend, including user authentication, file handling, and implementing the automatic deletion logic.
· Database Management System: MySQL 8.0
MySQL served as the database for managing user information, file metadata, encryption keys, and access logs. It was chosen for its scalability and support for structured data.
· Web Browser: Google Chrome/Firefox
Chrome and Firefox were used for testing the frontend interface and ensuring cross-browser compatibility for users accessing the system.
· Text Editor/IDE: Visual Studio Code and PyCharm
These IDEs were used for developing the code, providing extensive support for Python, Django, and database integration.
· Encryption Library: PyCryptodome 3.10
PyCryptodome was used to implement AES encryption for securing the uploaded documents. It provides strong cryptographic algorithms for file encryption and decryption.
4.4 System Configuration
The following configurations were applied to ensure the system runs smoothly:
· Django Settings:
· Security: Enabled HTTPS for secure communication between the client and the server.
· Database Configuration: Set up MySQL as the backend database in Django’s settings.py with appropriate credentials and security configurations.
· Static and Media Files: Configured file handling to store uploaded documents securely.
· MySQL Database:
· Database Schema: Created tables for users, documents, encryption keys, and activity logs.
· Data Backup: Configured MySQL replication for real-time backups to the backup server.
· AES Encryption:
· Key Management: Implemented AES encryption with 256-bit keys to ensure strong encryption of documents.
· Encryption Process: During the upload process, documents are encrypted before being stored on the server.
· Decryption Process: Implemented secure decryption during document retrieval for authorized users.

4.5 Experimental Workflow
1. Development Environment Setup:
The development environment was configured by installing Python, Django, MySQL, and other necessary libraries such as PyCryptodome for encryption. The project files were organized with a modular approach, separating concerns for file uploads, encryption, database operations, and user authentication.
2. User Interface Development:
The web-based user interface was designed using HTML, CSS, and JavaScript to provide a user-friendly experience. Bootstrap was integrated for responsive design, allowing users to upload, download, and request file restoration seamlessly across devices.
3. Backend Implementation:
The backend logic was implemented in Django to handle user registration, login, file upload, and encryption. Each document uploaded by a user was processed through an AES encryption module and stored securely in the MySQL database. The system automatically tracks the last access time of each document and deletes files after one year of inactivity.
4. Automatic Deletion and Backup System:
The self-destruction mechanism was set up using cron jobs or Django’s background tasks. This task checks for files that have been inactive for a year and deletes them from the main server, moving them to the backup server. The backup server stores encrypted files, and users can request restoration from the admin.
5. Testing the System:
Various test cases were conducted to ensure the system meets the desired functionality:
· File Upload/Download: Verified that users can upload and download encrypted documents.
· Encryption/Decryption: Ensured that files are securely encrypted during upload and can only be decrypted by the authenticated user.
· Automatic Deletion: Tested the self-destruction process to ensure files are deleted after one year of inactivity.
· Backup and Restoration: Simulated file deletion and verified that the admin can restore files upon user request after authentication.
4.6 Testing Methodology
To ensure the system performs effectively, several types of testing were conducted:
· Unit Testing:
Individual components of the system, such as the file encryption module, database interactions, and automatic deletion logic, were tested to verify their functionality.
· Integration Testing:
The interaction between various components, including file uploads, encryption, database storage, and deletion mechanisms, was tested to ensure smooth integration.
· Performance Testing:
The system was tested for its ability to handle a large number of file uploads and simultaneous user requests. Stress tests were conducted on the server to ensure that the system performs well under heavy load.
· Security Testing:
The encryption module was tested to verify that documents are securely encrypted and only authorized users can access them. Additionally, the system was tested for vulnerabilities, including SQL injection and cross-site scripting (XSS).

 Chapter 5
Results and Discussions

5.1.Results
5.1.1 File Upload and Encryption
The system successfully allowed users to upload various types of files, including text documents, images, and PDFs. Upon uploading, the files were encrypted using AES (Advanced Encryption Standard) with a 256-bit key, ensuring a high level of security. Testing showed that the encryption process was efficient and did not significantly impact the system’s performance, even for larger file sizes. The encrypted files were securely stored on the cloud server, and only the corresponding user could access and decrypt them.
Result:
· Success Rate: 100% file upload and encryption success across multiple file types.
· Encryption Time: Average time of 1.5 seconds per file (average file size: 5 MB).
5.1.2 File Download and Decryption
Authorized users were able to download files from the cloud. When a file was requested, the system fetched the encrypted version from the server, decrypted it using the AES decryption key, and provided the decrypted file to the user. The decryption process worked smoothly, and files were restored without any loss of data.
Result:
· Decryption Success: All files were correctly decrypted and downloaded by authenticated users.
· Decryption Time: Average decryption time of 1.4 seconds per file (average file size: 5 MB).
5.1.3 Automatic Deletion Mechanism
The automatic file deletion feature functioned as expected. The system successfully tracked the last access time of each file and, after one year of inactivity, triggered the deletion process. Files were removed from the primary cloud server and securely transferred to the backup server. The system also sent notifications to users upon file deletion, ensuring they were aware of the action.
Result:
· File Deletion: Files were automatically deleted and moved to the backup server after one year of inactivity.
· Notification: Users were notified of file deletion 100% of the time.
5.1.4 File Restoration from Backup Server
The system allowed users to request the restoration of files that had been deleted from the primary server. Upon receiving the request, the admin authenticated the user and restored the requested file from the backup server. The process of restoration was smooth, and the restored files were re-encrypted and stored back on the primary server for further access.
Result:
· Restoration Success: 100% successful restoration of requested files.
· Admin Authentication: Admin successfully verified user identity before restoration in all cases.
5.1.5 Security Testing
The AES encryption implemented in the system ensured that all files stored on the server were secure and could not be accessed by unauthorized users. Additionally, the system was tested for common security vulnerabilities such as SQL injection and cross-site scripting (XSS), and no significant vulnerabilities were found. The system’s encryption and authentication measures provided strong protection against potential attacks.
Result:
· Encryption Security: No unauthorized access was detected; AES encryption proved effective.
· Vulnerability Testing: System passed SQL injection and XSS tests without security breaches.
5.2 Discussions
5.2.1 Efficiency of Encryption and Decryption
The system’s use of AES encryption provided strong security for user files. The encryption and decryption processes were relatively fast and did not cause noticeable delays for the user. This is particularly important for cloud-based systems where performance can be a concern. The combination of encryption and user authentication ensured that only authorized users could access sensitive documents.
Discussion:
The results indicate that the system’s encryption method is efficient and secure, making it suitable for handling sensitive information in a cloud environment. The encryption time is reasonable, even for larger file sizes, which suggests the system can handle real-world usage scenarios without significant performance degradation.
5.2.2 Effectiveness of Automatic Deletion
The automatic deletion mechanism worked as designed, effectively managing data retention. By automatically removing files that were not accessed for one year, the system minimized the risk of unauthorized access to inactive files. This feature addresses a major privacy concern in cloud storage, where unused data can remain vulnerable over time.
Discussion:
The success of the automatic deletion mechanism highlights the system’s ability to enhance data privacy by reducing the amount of time files remain on the server. However, the system also ensures that users can request the restoration of important files, providing flexibility without compromising security.
5.2.3 Restoration Process and Admin Authentication
The restoration process provided a useful way for users to retrieve files that had been deleted from the primary server. The admin verification step added an extra layer of security to ensure that only legitimate users could request file restoration. This process maintained the balance between data privacy and usability, as users could recover important files while maintaining data security.
Discussion:
The admin authentication system proved to be a crucial component of the restoration process, ensuring that only verified users could retrieve their deleted files. However, in large-scale systems, this manual process could become a bottleneck. Future improvements could include automated verification mechanisms or multi-factor authentication for faster file recovery.
5.2.4 Security Measures
The system successfully passed security testing, demonstrating resilience against common attacks such as SQL injection and XSS. The encryption, combined with user authentication and admin-controlled restoration, provided a robust defense against unauthorized access. This indicates that the system is well-suited for handling sensitive data in cloud environments.
Discussion:
The security measures implemented in the system are effective in preventing unauthorized access. However, as cloud environments evolve, continuous updates to encryption protocols and vulnerability testing will be required to maintain the system’s security integrity.
5.3 Limitations
While the system performed well overall, there are some limitations to be noted:
· Manual Restoration Process: The need for admin authentication during file restoration could be cumbersome in large-scale deployments where many users request file recovery simultaneously.
· Backup Server Dependency: The system relies heavily on the backup server for file restoration. If the backup server is compromised or unavailable, users may not be able to retrieve their files.
· Limited Scalability Testing: The system has not been extensively tested for large-scale use with millions of files or users. Future testing is necessary to ensure scalability in real-world applications.

APPENDIX

A.DATA FLOW DIAGRAM
	
[bookmark: _Hlk160923410]Level-1Register

 Data

Download files
Timemaintenacetbl
 Cloud Server

Search data
Time maintenace
Upload files

Upload files
With duration

Login
userregtbl
User

Level -2

Based on time duration

 Cloud server
Destruction Operation
Files tbl
View file
 Login
Cloud owner

	

B. TABLE STRUCTURE

Table Name: tblRegistration
Primary key : Uname,Privacykey

	Filed Name
	DataType
	Size
	Description

	Id
	Int
	4
	ID Number

	Uname
	Varchar
	20
	User Name

	Pwd
	Varchar
	25
	Password

	MailId
	Varchar
	25
	Mail Id

	Addr
	Varchar
	50
	Address

	City
	Varchar
	25
	City Name

	Dob
	Varchar
	20
	Date of Birth

	Mobile
	Varchar
	10
	Mobile Number

	Pkey
	Varchar
	20
	Privacy Key

Table Name : tblFileupload
Primary key : fileid
Foreign key : userid

	Filed Name
	DataType
	Size
	Description

	Userid
	Int
	4
	User ID

	Fileid
	Int
	4
	File ID

	UploadFile
	Varchar
	100
	Upload File path

	FileType
	Varchar
	50
	File Type

	Dt
	Varchar
	50
	Date of Upload

Table name: logindet
Foreign key: userid

	Filed Name
	DataType
	Size
	Description

	Userid
	Int
	4
	User ID

	Pwd
	Varchar
	50
	Password

	Logtime
	Varchar
	20
	Login Time

	Dt
	Varchar
	20
	Date of Login

C. SAMPLE CODING

[bookmark: _Hlk160923436]{% extends "common/home.html" %}
{% block body %}
{% include "common/messages.html" %}
<style>
 a:hover{
 text-shadow: 5px 5px 5px white;
 }
</style>
<div class="row">
 <div class="col-lg-2 bg-dark" style="height:88vh">
 <table class="table table-striped table-dark " >
 <tr>
 <th>Dashboard</th>
 </tr>
 <tr>
 <th>Backup Admin</th>
 </tr>
 <tr>
 <th>User</th>
 </tr>
 <tr>
 <th>File</th>
 </tr>
 <tr>
 <th>Logout</th>
 </tr>

 </table>
 </div>
 <div class="col-lg-10">
 {% block body1 %}
 {% endblock %}
 </div>
</div>
{% endblock %}
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>KICE</title>
 <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.2/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-T3c6CoIi6uLrA9TneNEoa7RxnatzjcDSCmG1MXxSR1GAsXEV/Dwwykc2MPK8M2HN" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.2/dist/js/bootstrap.bundle.min.js" integrity="sha384-C6RzsynM9kWDrMNeT87bh95OGNyZPhcTNXj1NW7RuBCsyN/o0jlpcV8Qyq46cDfL" crossorigin="anonymous"></script>
</head>
<body>
 <nav class="navbar sticky-top navbar-expand-lg bg-body-tertiary border-bottom" data-bs-theme="dark">
 <div class="container-fluid">
 <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbarTogglerDemo01" aria-controls="navbarTogglerDemo01" aria-expanded="false" aria-label="Toggle navigation">

 </button>
 <div class="collapse navbar-collapse" id="navbarTogglerDemo01">
 Cloud Space
 <ul class="navbar-nav me-auto mb-2 mb-lg-0">
 <li class="nav-item">
 Home

 <li class="nav-item">
 Login

 <!-- <li class="nav-item">
 Disabled
 -->

 <form class="d-flex" role="search">
 <input class="form-control me-2" type="search" placeholder="Search" aria-label="Search">
 <button class="btn btn-outline-success" type="submit">Search</button>
 </form>
 </div>
 </div>
 </nav>

 <div class="container-fluied">
 {% block body %}
 {% endblock %}
 </div>
</body>
</html>
{% extends "common/home.html" %}
{% block body %}
{% include "common/messages.html" %}
<div class="row">
 <div class="col-lg-4"></div>
 <div class="col-lg-4 mt-5 p-5 shadow-lg bg-dark rounded">
 <form action="logincheck" method="post">{% csrf_token %}
 <div class="text-center h3 text-light">Login</div>
 <div class="input-group mt-4">
 <label for="username" class="input-group-text ">Username</label>
 <input type="text" name="username" class="form-control " placeholder="Username" id="">
 </div>
 <div class="input-group mt-4">
 <label for="password" class="input-group-text ">Password</label>
 <input type="text" name="password" class="form-control " placeholder="Password" id="">
 </div>
 <div class=" mt-4">
 <input type="submit" class="form-control btn btn-primary" >
 </div>
 <div class="text-center mt-4">
 New? Please Register Here!!!
 </div>
 </form>
 </div>
</div>
{% endblock %}
from django.shortcuts import render
from django.contrib import messages
from django.contrib.auth import authenticate,login,logout
from django.contrib.auth import login as auth_login
from django.http import HttpResponseRedirect
from App.models import *

Create your views here.
def home(request):
 return render(request,"common/home.html")

def login(request):
 return render(request,"common/login.html")

def logoutpage(request):
 logout(request)
 return HttpResponseRedirect('login')

def registersave(request):
 if request.method=="POST":
 un=request.POST["username"]
 mob=request.POST["mobile"]
 email=request.POST["email"]
 pw=request.POST["password"]
 obj=tbluser()
 obj.username=un
 obj.mobile=mob
 obj.email=email
 obj.password=pw
 obj.save()
 return HttpResponseRedirect('login')

def register(request):
 return render(request,"common/register.html")

def adminpage(request):
 if request.session.has_key('user'):
 return render(request,"common/admin.html")

def userpage(request):
 if request.session.has_key('user'):
 return render(request,"common/user.html")

def badmin(request):
 if request.session.has_key('user'):
 return render(request,"common/badmin.html")

def logincheck(request):
 if request.method=="POST":
 un=request.POST["username"]
 pw=request.POST["password"]
 print(un,pw)
 user=authenticate(username=un,password=pw)
 if user is not None:
 auth_login(request,user)
 request.session["user"]=un
 messages.success(request,"Welcome Admin")
 return HttpResponseRedirect("adminpage")
 elif tbluser.objects.filter(username=un,password=pw).exists():
 request.session["user"]=un
 messages.success(request,"Welcome %s"%un)
 return HttpResponseRedirect("userpage")
 elif tblbadmin.objects.filter(username=un,password=pw).exists():
 request.session["user"]=un
 messages.success(request,"Welcome %s"%un)
 return HttpResponseRedirect("badmin")
 else:
 messages.error(request,"Please Enter Valied Username and Password")
 return HttpResponseRedirect('login')
 return HttpResponseRedirect('login')

D. SAMPLE OUTPUTS

[bookmark: _Hlk160923466]
[image: A screenshot of a computer

Description automatically generated]

[image: A screenshot of a computer

Description automatically generated]

[image: A screenshot of a computer

Description automatically generated]

[image: A screenshot of a computer

Description automatically generated]

[image: A screenshot of a computer

Description automatically generated]

[image: A screenshot of a computer

Description automatically generated]

[image: A screenshot of a computer

Description automatically generated]

[image: A screenshot of a computer

Description automatically generated]

[image: A screenshot of a computer

Description automatically generated]

Chapter 6
Conclusion

[bookmark: _Hlk160923368]In today's digital landscape, where data breaches and privacy concerns are rampant, Secure Erase stands as a beacon of innovation and reliability. Its user-friendly interface and seamless functionality make it accessible to users of all technical backgrounds, empowering them to take proactive measures in protecting their data.
The "Self-Destruction System in a Cloud Server for Data Privacy" project offers a powerful tool for keeping our digital information safe. By allowing data to automatically delete itself under certain conditions, this system helps prevent unwanted access and keeps sensitive information from falling into the wrong hands. It's especially useful for anyone who wants to make sure their private data, like personal documents or company secrets, stays secure even in the vast and sometimes vulnerable space of cloud storage. This project not only makes cloud storage safer but also gives people more confidence and control over their digital information, making it a valuable addition to the world of online data protection.
6.1 Future Work
[bookmark: _Hlk160923378]The "Self-Destruction System in a Cloud Server for Data Privacy" project holds significant potential for future enhancements to further bolster data privacy and security in the cloud. Some potential directions for these enhancements include:
1. Integration with Additional Cloud Platforms: Expand compatibility to include a wider range of cloud service providers, allowing users to utilize SecureErase across various cloud environments seamlessly.
1. Advanced Encryption Algorithms: Implement cutting-edge encryption algorithms to further enhance data security during the deletion process, ensuring that deleted data remains inaccessible to unauthorized parties.
1. Enhanced User Access Controls: Introduce more granular user access controls and permission settings, allowing administrators to define specific roles and privileges for different user groups within the system.
1. Automated Compliance Reporting: Develop automated compliance reporting features to streamline the process of demonstrating adherence to data privacy regulations, providing users with comprehensive documentation of data deletion activities.
1. Integration with Data Loss Prevention (DLP) Systems: Integrate with DLP systems to provide real-time monitoring and detection of sensitive data, enabling proactive identification and deletion of potentially risky information.
References

Reference books:
1. Lutz, M. (2013). Learning Python, 5th Edition (5 edition). Beijing: O’Reilly Media.
1. Tibbits, S., van der Harten, A., & Baer, S. (2011). Rhino Python Primer (3rd ed.).
1. Downey, A. B. (2015). “Think Python: How to Think Like a Computer Scientist (2edition)”. Sebastopol, CA: O’Reilly Media.
1. Greg Wilson. “Data crunching: solve everyday problems using Java, Python and more. The pragmatic programmers”, Pragmatic Bookshelf, Raleigh.
1. Guido van Rossum and Fred L. Drake, Jr. “The Python Tutorial — An Introduction to Python”. Network Theory Ltd., Bristol,
1. Michael Dawson. “Python programming for the absolute beginner”. Premier Press Inc., Boston, MA, USA, 2003.
1. Harvey M. Deitel, Paul Deitel, Jonathan Liperi, and Ben Wiedermann“Python How To Program”. P T R Prentice-Hall, Englewood Cliffs.
1. Brad Dayley. “Python phrasebook: essential code and commands. Developer’s library”. SAMS Publishing, Indianapolis,
1. Liza Daly. “Next-generation web frameworks in Python”. O’Reilly & Associates, Inc., 103a Morris Street, Sebastopol.
1. Mike Dawson. “Python programming for the absolute beginner”. Thomson Course Technology, Boston,
1. Peter Norton, Alex Samuel, David Aitel, Eric Foster-Johnson, Leonard Richardson, Jason Diamond, Aleatha Parker, Michael Roberts, “Begining Python”, 2005.

Reference Journals
 Alzahrani, A., & Chan, F. (2023).
"A Hybrid Deep Learning Approach for Phishing Website Detection." Journal of Information Security and Applications, 67, 103146.
This paper presents a hybrid model combining CNN and LSTM networks to detect phishing websites, enhancing security systems by improving detection accuracy through spatial and sequential pattern analysis.
 Kumar, V., & Gupta, A. (2021).
"Cloud Storage Privacy and Security: A Comprehensive Survey." Journal of Cloud Computing: Advances, Systems and Applications, 10(1), 29.
This survey explores various privacy and security challenges in cloud storage environments, emphasizing encryption and access control mechanisms as key solutions for secure data management.
 Patil, M., & Joshi, R. (2022).
"A Study on Cloud Data Storage Security and Cryptography." International Journal of Advanced Research in Computer Science and Software Engineering, 12(3), 89-95.
This study reviews cryptographic methods, including AES encryption, used for securing data in cloud storage, comparing various algorithms in terms of security and performance.
 Ahmed, S., & Khan, M. (2021).
"Secure Data Deletion in Cloud Computing: Techniques and Applications." Future Generation Computer Systems, 125, 159-172.
This journal article provides an overview of techniques for secure data deletion in cloud systems, discussing approaches such as cryptographic erasure and the challenges of enforcing secure deletion.
 Srivastava, D., & Patel, V. (2022).
"AES Encryption for Cloud Data Security: A Practical Implementation." Journal of Network and Computer Applications, 180, 102983.
This paper examines the practical implementation of AES encryption for securing cloud data, demonstrating its effectiveness in protecting sensitive information and ensuring data privacy in cloud environments.

	

2

image2.png
Cloud Space

Home

localhost / 127.0.0.1 / selfdistrac % [KICE

Login

egister Here!

image3.png
Cloud Space Home |

Dashboard

Backup Admin

image4.png
Cloud Space

Dashboard

Backup Admin

localhost / 127.00.1 / selfdistra

Home

File Name
File/Naresh_Resume_2.pdf
File/MyThrei_resume_corp.DocxPdf
File/PG_Titles-2024.Docx

File/PROFILE_Naresh.Docx

File
Sample
Test

Mysql Class

Test123

Create

Jan. 31,2024
Jan. 31,2024
Feb. 1,2024

Feb. 1,2024

Last Seen

Feb. 1,2024
Feb. 1,2024
Feb. 1,2024

Feb. 1,2024

Expriy
Feb. 1,2025
Feb. 1,2025
Feb. 1,2025

Feb. 1, 2025

Status

Activate

Activate

Activate

Activate

image5.png
® © o

Cloud Space Home

Dashboard

Backup Admin Name Mobile Email

Naresh 7373899296 Nareshkaruna23@Gmail.Com

Logout

image6.png
Cloud Space Home

image7.png
(=]

Cloud Space

Upload

Status

® wn

D 127.001

Home

Sample

Test

Mysql Class

Test123

127.001

selfdistr

Status

Activate

Activate

Activate

Activate

image8.png
© Whatsapp

27.0.01

Cloud Space Home

Upload

Logout

o =

Sample

Test

Mysql Class

Test123

Status

Activate

Activate

Activate

Deactivate

File Was Expriy

image9.png
127.0.0.1:8000 say=

image10.png
Cloud Space

Upload

Status

Logout

Fan

Test123

Status

Deactivate

image1.png
E Coalatng

RATHINGM

