WhatsApp at (+91-9098855509) Support
ijprems Logo
  • Home
  • About Us
    • Editor Vision
    • Editorial Board
    • Privacy Policy
    • Terms & Conditions
    • Publication Ethics
    • Peer Review Process
  • For Authors
    • Publication Process(up)
    • Submit Paper Online
    • Pay Publication Fee
    • Track Paper
    • Copyright Form
    • Paper Format
    • Topics
  • Fees
  • Indexing
  • Conference
  • Contact
  • Archieves
    • Current Issue
    • Past Issue
  • More
    • FAQs
    • Join As Reviewer
  • Submit Paper

Recent Papers

Dedicated to advancing knowledge through rigorous research and scholarly publication

  1. Home
  2. Recent Papers

Social Influence Based Personal Latent Factors Learning for Effective Recommendation

Saveetha P P, Latha S, Sakthisri S S, Suriyakala B, Latha S , Sakthisri S S , Suriyakala B

Download Paper

Paper Contents

Abstract

We propose Trust SVD, a trust-based matrix factorization technique for recommendations. Trust SVD integrates multiple information sources into the recommendation model in order to reduce the data and cold start problems and their degradation of recommendation performance. An analysis of social trust data from four real-world data sets suggests that not only the explicit but also the implicit influence of both ratings and trust should be taken into consideration in a recommendation model. Trust SVD therefore builds on top of a state-of-the-art recommendation algorithm, SVD++ (which uses the explicit and implicit influence of rated items), by further incorporating both the explicit and implicit influence of trusted and trusting users on the prediction of items for an active user. The proposed technique is the first to extend SVD++ with social trust information. Experimental results on the four data sets demonstrate that Trust SVD achieves better accuracy than other ten counterparts recommendation techniques. In this project, we propose Trust SVD, a trust-based matrix factorization technique for recommendations. Trust SVD integrates multiple information sources into the recommendation model in order to reduce the data and cold start problems and their degradation of recommendation performance. An analysis of social trust data from four real-world data sets suggests that not only the explicit but also the implicit influence of both ratings and trust should be taken into consideration in a recommendation model. Trust SVD therefore builds on top of a state-of-the-art recommendation algorithm, SVD++ (which uses the explicit and implicit influence of rated items), by further incorporating both the explicit and implicit influence of trusted and trusting users on the prediction of items for an active user. The proposed technique is the first to extend SVD++ with social trust information.

Copyright

Copyright © 2023 Saveetha P, Latha S, Sakthisri S S, Suriyakala B. This is an open access article distributed under the Creative Commons Attribution License.

Paper Details
Paper ID: IJPREMS30300006720
ISSN: 2321-9653
Publisher: ijprems
Page Navigation
  • Abstract
  • Copyright
About IJPREMS

The International Journal of Progressive Research in Engineering, Management and Science is a peer-reviewed, open access journal that publishes original research articles in engineering, management, and applied sciences.

Quick Links
  • Home
  • About Our Journal
  • Editorial Board
  • Publication Ethics
Contact Us
  • IJPREMS - International Journal of Progressive Research in Engineering Management and Science, motinagar, ujjain, Madhya Pradesh., india
  • Chat with us on WhatsApp: +91 909-885-5509
  • Email us: editor@ijprems.com
  • Mon-Fri: 9:00 AM - 5:00 PM

© 2025 International Journal of Progressive Research in Engineering, Management and Science.Designed and Developed by EVG Software Solutions All Rights Reserved.

Terms & Conditions | Privacy Policy | Publication Ethics | Peer Review Process | Contact Us